This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997) (Revised by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelco2g | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( C o. D ) <-> E. x ( <. A , x >. e. D /\ <. x , B >. e. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcog | |- ( ( A e. V /\ B e. W ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) ) |
|
| 2 | df-br | |- ( A ( C o. D ) B <-> <. A , B >. e. ( C o. D ) ) |
|
| 3 | df-br | |- ( A D x <-> <. A , x >. e. D ) |
|
| 4 | df-br | |- ( x C B <-> <. x , B >. e. C ) |
|
| 5 | 3 4 | anbi12i | |- ( ( A D x /\ x C B ) <-> ( <. A , x >. e. D /\ <. x , B >. e. C ) ) |
| 6 | 5 | exbii | |- ( E. x ( A D x /\ x C B ) <-> E. x ( <. A , x >. e. D /\ <. x , B >. e. C ) ) |
| 7 | 1 2 6 | 3bitr3g | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( C o. D ) <-> E. x ( <. A , x >. e. D /\ <. x , B >. e. C ) ) ) |