This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the Hilbert lattice. (Contributed by NM, 8-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfch2 | |- CH = { x e. ~P ~H | ( _|_ ` ( _|_ ` x ) ) = x } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chss | |- ( x e. CH -> x C_ ~H ) |
|
| 2 | ococ | |- ( x e. CH -> ( _|_ ` ( _|_ ` x ) ) = x ) |
|
| 3 | 1 2 | jca | |- ( x e. CH -> ( x C_ ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) ) |
| 4 | occl | |- ( x C_ ~H -> ( _|_ ` x ) e. CH ) |
|
| 5 | chss | |- ( ( _|_ ` x ) e. CH -> ( _|_ ` x ) C_ ~H ) |
|
| 6 | occl | |- ( ( _|_ ` x ) C_ ~H -> ( _|_ ` ( _|_ ` x ) ) e. CH ) |
|
| 7 | 4 5 6 | 3syl | |- ( x C_ ~H -> ( _|_ ` ( _|_ ` x ) ) e. CH ) |
| 8 | eleq1 | |- ( ( _|_ ` ( _|_ ` x ) ) = x -> ( ( _|_ ` ( _|_ ` x ) ) e. CH <-> x e. CH ) ) |
|
| 9 | 7 8 | imbitrid | |- ( ( _|_ ` ( _|_ ` x ) ) = x -> ( x C_ ~H -> x e. CH ) ) |
| 10 | 9 | impcom | |- ( ( x C_ ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) -> x e. CH ) |
| 11 | 3 10 | impbii | |- ( x e. CH <-> ( x C_ ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) ) |
| 12 | velpw | |- ( x e. ~P ~H <-> x C_ ~H ) |
|
| 13 | 12 | anbi1i | |- ( ( x e. ~P ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) <-> ( x C_ ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) ) |
| 14 | 11 13 | bitr4i | |- ( x e. CH <-> ( x e. ~P ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) ) |
| 15 | 14 | eqabi | |- CH = { x | ( x e. ~P ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) } |
| 16 | df-rab | |- { x e. ~P ~H | ( _|_ ` ( _|_ ` x ) ) = x } = { x | ( x e. ~P ~H /\ ( _|_ ` ( _|_ ` x ) ) = x ) } |
|
| 17 | 15 16 | eqtr4i | |- CH = { x e. ~P ~H | ( _|_ ` ( _|_ ` x ) ) = x } |