This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the Hilbert lattice. (Contributed by NM, 8-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfch2 | ⊢ Cℋ = { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chss | ⊢ ( 𝑥 ∈ Cℋ → 𝑥 ⊆ ℋ ) | |
| 2 | ococ | ⊢ ( 𝑥 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝑥 ∈ Cℋ → ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 4 | occl | ⊢ ( 𝑥 ⊆ ℋ → ( ⊥ ‘ 𝑥 ) ∈ Cℋ ) | |
| 5 | chss | ⊢ ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ⊥ ‘ 𝑥 ) ⊆ ℋ ) | |
| 6 | occl | ⊢ ( ( ⊥ ‘ 𝑥 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ Cℋ ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝑥 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ Cℋ ) |
| 8 | eleq1 | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ Cℋ ↔ 𝑥 ∈ Cℋ ) ) | |
| 9 | 7 8 | imbitrid | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 → ( 𝑥 ⊆ ℋ → 𝑥 ∈ Cℋ ) ) |
| 10 | 9 | impcom | ⊢ ( ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) → 𝑥 ∈ Cℋ ) |
| 11 | 3 10 | impbii | ⊢ ( 𝑥 ∈ Cℋ ↔ ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 12 | velpw | ⊢ ( 𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ ) | |
| 13 | 12 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ↔ ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 14 | 11 13 | bitr4i | ⊢ ( 𝑥 ∈ Cℋ ↔ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 15 | 14 | eqabi | ⊢ Cℋ = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) } |
| 16 | df-rab | ⊢ { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) } | |
| 17 | 15 16 | eqtr4i | ⊢ Cℋ = { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } |