This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acacni | |- ( ( CHOICE /\ A e. V ) -> AC_ A = _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( CHOICE /\ A e. V ) -> A e. V ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | simpl | |- ( ( CHOICE /\ A e. V ) -> CHOICE ) |
|
| 4 | dfac10 | |- ( CHOICE <-> dom card = _V ) |
|
| 5 | 3 4 | sylib | |- ( ( CHOICE /\ A e. V ) -> dom card = _V ) |
| 6 | 2 5 | eleqtrrid | |- ( ( CHOICE /\ A e. V ) -> x e. dom card ) |
| 7 | numacn | |- ( A e. V -> ( x e. dom card -> x e. AC_ A ) ) |
|
| 8 | 1 6 7 | sylc | |- ( ( CHOICE /\ A e. V ) -> x e. AC_ A ) |
| 9 | 2 | a1i | |- ( ( CHOICE /\ A e. V ) -> x e. _V ) |
| 10 | 8 9 | 2thd | |- ( ( CHOICE /\ A e. V ) -> ( x e. AC_ A <-> x e. _V ) ) |
| 11 | 10 | eqrdv | |- ( ( CHOICE /\ A e. V ) -> AC_ A = _V ) |