This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of dfac12 and dfac12a , without using Regularity. (Contributed by Mario Carneiro, 21-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac12k | |- ( A. x e. On ~P x e. dom card <-> A. y e. On ~P ( aleph ` y ) e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephon | |- ( aleph ` y ) e. On |
|
| 2 | pweq | |- ( x = ( aleph ` y ) -> ~P x = ~P ( aleph ` y ) ) |
|
| 3 | 2 | eleq1d | |- ( x = ( aleph ` y ) -> ( ~P x e. dom card <-> ~P ( aleph ` y ) e. dom card ) ) |
| 4 | 3 | rspcv | |- ( ( aleph ` y ) e. On -> ( A. x e. On ~P x e. dom card -> ~P ( aleph ` y ) e. dom card ) ) |
| 5 | 1 4 | ax-mp | |- ( A. x e. On ~P x e. dom card -> ~P ( aleph ` y ) e. dom card ) |
| 6 | 5 | ralrimivw | |- ( A. x e. On ~P x e. dom card -> A. y e. On ~P ( aleph ` y ) e. dom card ) |
| 7 | omelon | |- _om e. On |
|
| 8 | cardon | |- ( card ` x ) e. On |
|
| 9 | ontri1 | |- ( ( _om e. On /\ ( card ` x ) e. On ) -> ( _om C_ ( card ` x ) <-> -. ( card ` x ) e. _om ) ) |
|
| 10 | 7 8 9 | mp2an | |- ( _om C_ ( card ` x ) <-> -. ( card ` x ) e. _om ) |
| 11 | cardidm | |- ( card ` ( card ` x ) ) = ( card ` x ) |
|
| 12 | cardalephex | |- ( _om C_ ( card ` x ) -> ( ( card ` ( card ` x ) ) = ( card ` x ) <-> E. y e. On ( card ` x ) = ( aleph ` y ) ) ) |
|
| 13 | 11 12 | mpbii | |- ( _om C_ ( card ` x ) -> E. y e. On ( card ` x ) = ( aleph ` y ) ) |
| 14 | r19.29 | |- ( ( A. y e. On ~P ( aleph ` y ) e. dom card /\ E. y e. On ( card ` x ) = ( aleph ` y ) ) -> E. y e. On ( ~P ( aleph ` y ) e. dom card /\ ( card ` x ) = ( aleph ` y ) ) ) |
|
| 15 | pweq | |- ( ( card ` x ) = ( aleph ` y ) -> ~P ( card ` x ) = ~P ( aleph ` y ) ) |
|
| 16 | 15 | eleq1d | |- ( ( card ` x ) = ( aleph ` y ) -> ( ~P ( card ` x ) e. dom card <-> ~P ( aleph ` y ) e. dom card ) ) |
| 17 | 16 | biimparc | |- ( ( ~P ( aleph ` y ) e. dom card /\ ( card ` x ) = ( aleph ` y ) ) -> ~P ( card ` x ) e. dom card ) |
| 18 | 17 | rexlimivw | |- ( E. y e. On ( ~P ( aleph ` y ) e. dom card /\ ( card ` x ) = ( aleph ` y ) ) -> ~P ( card ` x ) e. dom card ) |
| 19 | 14 18 | syl | |- ( ( A. y e. On ~P ( aleph ` y ) e. dom card /\ E. y e. On ( card ` x ) = ( aleph ` y ) ) -> ~P ( card ` x ) e. dom card ) |
| 20 | 19 | ex | |- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ( E. y e. On ( card ` x ) = ( aleph ` y ) -> ~P ( card ` x ) e. dom card ) ) |
| 21 | 13 20 | syl5 | |- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ( _om C_ ( card ` x ) -> ~P ( card ` x ) e. dom card ) ) |
| 22 | 10 21 | biimtrrid | |- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ( -. ( card ` x ) e. _om -> ~P ( card ` x ) e. dom card ) ) |
| 23 | nnfi | |- ( ( card ` x ) e. _om -> ( card ` x ) e. Fin ) |
|
| 24 | pwfi | |- ( ( card ` x ) e. Fin <-> ~P ( card ` x ) e. Fin ) |
|
| 25 | 23 24 | sylib | |- ( ( card ` x ) e. _om -> ~P ( card ` x ) e. Fin ) |
| 26 | finnum | |- ( ~P ( card ` x ) e. Fin -> ~P ( card ` x ) e. dom card ) |
|
| 27 | 25 26 | syl | |- ( ( card ` x ) e. _om -> ~P ( card ` x ) e. dom card ) |
| 28 | 22 27 | pm2.61d2 | |- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ~P ( card ` x ) e. dom card ) |
| 29 | oncardid | |- ( x e. On -> ( card ` x ) ~~ x ) |
|
| 30 | pwen | |- ( ( card ` x ) ~~ x -> ~P ( card ` x ) ~~ ~P x ) |
|
| 31 | ennum | |- ( ~P ( card ` x ) ~~ ~P x -> ( ~P ( card ` x ) e. dom card <-> ~P x e. dom card ) ) |
|
| 32 | 29 30 31 | 3syl | |- ( x e. On -> ( ~P ( card ` x ) e. dom card <-> ~P x e. dom card ) ) |
| 33 | 28 32 | syl5ibcom | |- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ( x e. On -> ~P x e. dom card ) ) |
| 34 | 33 | ralrimiv | |- ( A. y e. On ~P ( aleph ` y ) e. dom card -> A. x e. On ~P x e. dom card ) |
| 35 | 6 34 | impbii | |- ( A. x e. On ~P x e. dom card <-> A. y e. On ~P ( aleph ` y ) e. dom card ) |