This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac12a | |- ( CHOICE <-> A. x e. On ~P x e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv | |- dom card C_ _V |
|
| 2 | eqss | |- ( dom card = _V <-> ( dom card C_ _V /\ _V C_ dom card ) ) |
|
| 3 | 1 2 | mpbiran | |- ( dom card = _V <-> _V C_ dom card ) |
| 4 | dfac10 | |- ( CHOICE <-> dom card = _V ) |
|
| 5 | unir1 | |- U. ( R1 " On ) = _V |
|
| 6 | 5 | sseq1i | |- ( U. ( R1 " On ) C_ dom card <-> _V C_ dom card ) |
| 7 | 3 4 6 | 3bitr4i | |- ( CHOICE <-> U. ( R1 " On ) C_ dom card ) |
| 8 | dfac12r | |- ( A. x e. On ~P x e. dom card <-> U. ( R1 " On ) C_ dom card ) |
|
| 9 | 7 8 | bitr4i | |- ( CHOICE <-> A. x e. On ~P x e. dom card ) |