This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | df2idl2rng.u | |- U = ( 2Ideal ` R ) |
|
| df2idl2rng.b | |- B = ( Base ` R ) |
||
| df2idl2rng.t | |- .x. = ( .r ` R ) |
||
| Assertion | df2idl2rng | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( ( x .x. y ) e. I /\ ( y .x. x ) e. I ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2idl2rng.u | |- U = ( 2Ideal ` R ) |
|
| 2 | df2idl2rng.b | |- B = ( Base ` R ) |
|
| 3 | df2idl2rng.t | |- .x. = ( .r ` R ) |
|
| 4 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 5 | 4 2 3 | dflidl2rng | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. ( LIdeal ` R ) <-> A. x e. B A. y e. I ( x .x. y ) e. I ) ) |
| 6 | eqid | |- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
|
| 7 | 6 2 3 | isridlrng | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. ( LIdeal ` ( oppR ` R ) ) <-> A. x e. B A. y e. I ( y .x. x ) e. I ) ) |
| 8 | 5 7 | anbi12d | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( ( I e. ( LIdeal ` R ) /\ I e. ( LIdeal ` ( oppR ` R ) ) ) <-> ( A. x e. B A. y e. I ( x .x. y ) e. I /\ A. x e. B A. y e. I ( y .x. x ) e. I ) ) ) |
| 9 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 10 | 4 9 6 1 | 2idlelb | |- ( I e. U <-> ( I e. ( LIdeal ` R ) /\ I e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 11 | r19.26-2 | |- ( A. x e. B A. y e. I ( ( x .x. y ) e. I /\ ( y .x. x ) e. I ) <-> ( A. x e. B A. y e. I ( x .x. y ) e. I /\ A. x e. B A. y e. I ( y .x. x ) e. I ) ) |
|
| 12 | 8 10 11 | 3bitr4g | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( ( x .x. y ) e. I /\ ( y .x. x ) e. I ) ) ) |