This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025) (Proof shortened by AV, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | df2idl2rng.u | |- U = ( 2Ideal ` R ) |
|
| df2idl2rng.b | |- B = ( Base ` R ) |
||
| df2idl2rng.t | |- .x. = ( .r ` R ) |
||
| Assertion | df2idl2 | |- ( R e. Ring -> ( I e. U <-> ( I e. ( SubGrp ` R ) /\ A. x e. B A. y e. I ( ( x .x. y ) e. I /\ ( y .x. x ) e. I ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2idl2rng.u | |- U = ( 2Ideal ` R ) |
|
| 2 | df2idl2rng.b | |- B = ( Base ` R ) |
|
| 3 | df2idl2rng.t | |- .x. = ( .r ` R ) |
|
| 4 | 1 | eleq2i | |- ( I e. U <-> I e. ( 2Ideal ` R ) ) |
| 5 | 4 | biimpi | |- ( I e. U -> I e. ( 2Ideal ` R ) ) |
| 6 | 5 | 2idllidld | |- ( I e. U -> I e. ( LIdeal ` R ) ) |
| 7 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 8 | 7 | lidlsubg | |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( SubGrp ` R ) ) |
| 9 | 6 8 | sylan2 | |- ( ( R e. Ring /\ I e. U ) -> I e. ( SubGrp ` R ) ) |
| 10 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
| 11 | 1 2 3 | df2idl2rng | |- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( ( x .x. y ) e. I /\ ( y .x. x ) e. I ) ) ) |
| 12 | 10 11 | sylan | |- ( ( R e. Ring /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( ( x .x. y ) e. I /\ ( y .x. x ) e. I ) ) ) |
| 13 | 9 12 | biadanid | |- ( R e. Ring -> ( I e. U <-> ( I e. ( SubGrp ` R ) /\ A. x e. B A. y e. I ( ( x .x. y ) e. I /\ ( y .x. x ) e. I ) ) ) ) |