This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dec5dvds.1 | |- A e. NN0 |
|
| dec5dvds.2 | |- B e. NN |
||
| dec5dvds.3 | |- B < 5 |
||
| Assertion | dec5dvds | |- -. 5 || ; A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dec5dvds.1 | |- A e. NN0 |
|
| 2 | dec5dvds.2 | |- B e. NN |
|
| 3 | dec5dvds.3 | |- B < 5 |
|
| 4 | 5nn | |- 5 e. NN |
|
| 5 | 2nn0 | |- 2 e. NN0 |
|
| 6 | 5 1 | nn0mulcli | |- ( 2 x. A ) e. NN0 |
| 7 | 5cn | |- 5 e. CC |
|
| 8 | 2cn | |- 2 e. CC |
|
| 9 | 1 | nn0cni | |- A e. CC |
| 10 | 7 8 9 | mulassi | |- ( ( 5 x. 2 ) x. A ) = ( 5 x. ( 2 x. A ) ) |
| 11 | 5t2e10 | |- ( 5 x. 2 ) = ; 1 0 |
|
| 12 | 11 | oveq1i | |- ( ( 5 x. 2 ) x. A ) = ( ; 1 0 x. A ) |
| 13 | 10 12 | eqtr3i | |- ( 5 x. ( 2 x. A ) ) = ( ; 1 0 x. A ) |
| 14 | 13 | oveq1i | |- ( ( 5 x. ( 2 x. A ) ) + B ) = ( ( ; 1 0 x. A ) + B ) |
| 15 | dfdec10 | |- ; A B = ( ( ; 1 0 x. A ) + B ) |
|
| 16 | 14 15 | eqtr4i | |- ( ( 5 x. ( 2 x. A ) ) + B ) = ; A B |
| 17 | 4 6 2 16 3 | ndvdsi | |- -. 5 || ; A B |