This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of an element of the set of nonnegative integer powers of an element A . Although this theorem holds for any class G , the definition of F is only meaningful if G is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubm.b | ||
| cycsubm.t | |||
| cycsubm.f | |||
| cycsubm.c | |||
| Assertion | cycsubmel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubm.b | ||
| 2 | cycsubm.t | ||
| 3 | cycsubm.f | ||
| 4 | cycsubm.c | ||
| 5 | 4 | eleq2i | |
| 6 | ovex | ||
| 7 | 6 3 | fnmpti | |
| 8 | fvelrnb | ||
| 9 | 7 8 | ax-mp | |
| 10 | oveq1 | ||
| 11 | ovex | ||
| 12 | 10 3 11 | fvmpt | |
| 13 | 12 | eqeq1d | |
| 14 | eqcom | ||
| 15 | 13 14 | bitrdi | |
| 16 | 15 | rexbiia | |
| 17 | 5 9 16 | 3bitri |