This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cyclic group generated by A is the smallest subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubg.x | |- X = ( Base ` G ) |
|
| cycsubg.t | |- .x. = ( .g ` G ) |
||
| cycsubg.f | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
||
| Assertion | cycsubg | |- ( ( G e. Grp /\ A e. X ) -> ran F = |^| { s e. ( SubGrp ` G ) | A e. s } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubg.x | |- X = ( Base ` G ) |
|
| 2 | cycsubg.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubg.f | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
|
| 4 | ssintab | |- ( ran F C_ |^| { s | ( s e. ( SubGrp ` G ) /\ A e. s ) } <-> A. s ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> ran F C_ s ) ) |
|
| 5 | 1 2 3 | cycsubgss | |- ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> ran F C_ s ) |
| 6 | 4 5 | mpgbir | |- ran F C_ |^| { s | ( s e. ( SubGrp ` G ) /\ A e. s ) } |
| 7 | df-rab | |- { s e. ( SubGrp ` G ) | A e. s } = { s | ( s e. ( SubGrp ` G ) /\ A e. s ) } |
|
| 8 | 7 | inteqi | |- |^| { s e. ( SubGrp ` G ) | A e. s } = |^| { s | ( s e. ( SubGrp ` G ) /\ A e. s ) } |
| 9 | 6 8 | sseqtrri | |- ran F C_ |^| { s e. ( SubGrp ` G ) | A e. s } |
| 10 | 9 | a1i | |- ( ( G e. Grp /\ A e. X ) -> ran F C_ |^| { s e. ( SubGrp ` G ) | A e. s } ) |
| 11 | 1 2 3 | cycsubgcl | |- ( ( G e. Grp /\ A e. X ) -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) |
| 12 | eleq2 | |- ( s = ran F -> ( A e. s <-> A e. ran F ) ) |
|
| 13 | 12 | elrab | |- ( ran F e. { s e. ( SubGrp ` G ) | A e. s } <-> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) |
| 14 | 11 13 | sylibr | |- ( ( G e. Grp /\ A e. X ) -> ran F e. { s e. ( SubGrp ` G ) | A e. s } ) |
| 15 | intss1 | |- ( ran F e. { s e. ( SubGrp ` G ) | A e. s } -> |^| { s e. ( SubGrp ` G ) | A e. s } C_ ran F ) |
|
| 16 | 14 15 | syl | |- ( ( G e. Grp /\ A e. X ) -> |^| { s e. ( SubGrp ` G ) | A e. s } C_ ran F ) |
| 17 | 10 16 | eqssd | |- ( ( G e. Grp /\ A e. X ) -> ran F = |^| { s e. ( SubGrp ` G ) | A e. s } ) |