This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubg2cl.x | |- X = ( Base ` G ) |
|
| cycsubg2cl.t | |- .x. = ( .g ` G ) |
||
| cycsubg2cl.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | cycsubg2cl | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( N .x. A ) e. ( K ` { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubg2cl.x | |- X = ( Base ` G ) |
|
| 2 | cycsubg2cl.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubg2cl.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 4 | 1 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` X ) ) |
| 5 | 4 | acsmred | |- ( G e. Grp -> ( SubGrp ` G ) e. ( Moore ` X ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( SubGrp ` G ) e. ( Moore ` X ) ) |
| 7 | simp2 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> A e. X ) |
|
| 8 | 7 | snssd | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> { A } C_ X ) |
| 9 | 3 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` X ) /\ { A } C_ X ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 10 | 6 8 9 | syl2anc | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 11 | simp3 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> N e. ZZ ) |
|
| 12 | 6 3 8 | mrcssidd | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> { A } C_ ( K ` { A } ) ) |
| 13 | snssg | |- ( A e. X -> ( A e. ( K ` { A } ) <-> { A } C_ ( K ` { A } ) ) ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( A e. ( K ` { A } ) <-> { A } C_ ( K ` { A } ) ) ) |
| 15 | 12 14 | mpbird | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> A e. ( K ` { A } ) ) |
| 16 | 2 | subgmulgcl | |- ( ( ( K ` { A } ) e. ( SubGrp ` G ) /\ N e. ZZ /\ A e. ( K ` { A } ) ) -> ( N .x. A ) e. ( K ` { A } ) ) |
| 17 | 10 11 15 16 | syl3anc | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( N .x. A ) e. ( K ` { A } ) ) |