This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpp1 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c ( B + 1 ) ) = ( ( A ^c B ) x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | cxpadd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC /\ 1 e. CC ) -> ( A ^c ( B + 1 ) ) = ( ( A ^c B ) x. ( A ^c 1 ) ) ) |
|
| 3 | 1 2 | mp3an3 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) -> ( A ^c ( B + 1 ) ) = ( ( A ^c B ) x. ( A ^c 1 ) ) ) |
| 4 | 3 | 3impa | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c ( B + 1 ) ) = ( ( A ^c B ) x. ( A ^c 1 ) ) ) |
| 5 | cxp1 | |- ( A e. CC -> ( A ^c 1 ) = A ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c 1 ) = A ) |
| 7 | 6 | oveq2d | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( ( A ^c B ) x. ( A ^c 1 ) ) = ( ( A ^c B ) x. A ) ) |
| 8 | 4 7 | eqtrd | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c ( B + 1 ) ) = ( ( A ^c B ) x. A ) ) |