This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvlexch.b | |- B = ( Base ` K ) |
|
| cvlexch.l | |- .<_ = ( le ` K ) |
||
| cvlexch.j | |- .\/ = ( join ` K ) |
||
| cvlexch.a | |- A = ( Atoms ` K ) |
||
| Assertion | cvlexchb1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( P .<_ ( X .\/ Q ) <-> ( X .\/ P ) = ( X .\/ Q ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlexch.b | |- B = ( Base ` K ) |
|
| 2 | cvlexch.l | |- .<_ = ( le ` K ) |
|
| 3 | cvlexch.j | |- .\/ = ( join ` K ) |
|
| 4 | cvlexch.a | |- A = ( Atoms ` K ) |
|
| 5 | cvllat | |- ( K e. CvLat -> K e. Lat ) |
|
| 6 | 5 | adantr | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> K e. Lat ) |
| 7 | simpr3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> X e. B ) |
|
| 8 | simpr2 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> Q e. A ) |
|
| 9 | 1 4 | atbase | |- ( Q e. A -> Q e. B ) |
| 10 | 8 9 | syl | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> Q e. B ) |
| 11 | 1 2 3 | latlej1 | |- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> X .<_ ( X .\/ Q ) ) |
| 12 | 6 7 10 11 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> X .<_ ( X .\/ Q ) ) |
| 13 | 12 | 3adant3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> X .<_ ( X .\/ Q ) ) |
| 14 | 13 | adantr | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> X .<_ ( X .\/ Q ) ) |
| 15 | simpr | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> P .<_ ( X .\/ Q ) ) |
|
| 16 | simpr1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> P e. A ) |
|
| 17 | 1 4 | atbase | |- ( P e. A -> P e. B ) |
| 18 | 16 17 | syl | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> P e. B ) |
| 19 | 1 3 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> ( X .\/ Q ) e. B ) |
| 20 | 6 7 10 19 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( X .\/ Q ) e. B ) |
| 21 | 1 2 3 | latjle12 | |- ( ( K e. Lat /\ ( X e. B /\ P e. B /\ ( X .\/ Q ) e. B ) ) -> ( ( X .<_ ( X .\/ Q ) /\ P .<_ ( X .\/ Q ) ) <-> ( X .\/ P ) .<_ ( X .\/ Q ) ) ) |
| 22 | 6 7 18 20 21 | syl13anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( ( X .<_ ( X .\/ Q ) /\ P .<_ ( X .\/ Q ) ) <-> ( X .\/ P ) .<_ ( X .\/ Q ) ) ) |
| 23 | 22 | 3adant3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( ( X .<_ ( X .\/ Q ) /\ P .<_ ( X .\/ Q ) ) <-> ( X .\/ P ) .<_ ( X .\/ Q ) ) ) |
| 24 | 23 | adantr | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X .<_ ( X .\/ Q ) /\ P .<_ ( X .\/ Q ) ) <-> ( X .\/ P ) .<_ ( X .\/ Q ) ) ) |
| 25 | 14 15 24 | mpbi2and | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ P ) .<_ ( X .\/ Q ) ) |
| 26 | 1 2 3 | latlej1 | |- ( ( K e. Lat /\ X e. B /\ P e. B ) -> X .<_ ( X .\/ P ) ) |
| 27 | 6 7 18 26 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> X .<_ ( X .\/ P ) ) |
| 28 | 27 | 3adant3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> X .<_ ( X .\/ P ) ) |
| 29 | 28 | adantr | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> X .<_ ( X .\/ P ) ) |
| 30 | 1 2 3 4 | cvlexch1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) |
| 31 | 30 | imp | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> Q .<_ ( X .\/ P ) ) |
| 32 | 1 3 | latjcl | |- ( ( K e. Lat /\ X e. B /\ P e. B ) -> ( X .\/ P ) e. B ) |
| 33 | 6 7 18 32 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( X .\/ P ) e. B ) |
| 34 | 1 2 3 | latjle12 | |- ( ( K e. Lat /\ ( X e. B /\ Q e. B /\ ( X .\/ P ) e. B ) ) -> ( ( X .<_ ( X .\/ P ) /\ Q .<_ ( X .\/ P ) ) <-> ( X .\/ Q ) .<_ ( X .\/ P ) ) ) |
| 35 | 6 7 10 33 34 | syl13anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( ( X .<_ ( X .\/ P ) /\ Q .<_ ( X .\/ P ) ) <-> ( X .\/ Q ) .<_ ( X .\/ P ) ) ) |
| 36 | 35 | 3adant3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( ( X .<_ ( X .\/ P ) /\ Q .<_ ( X .\/ P ) ) <-> ( X .\/ Q ) .<_ ( X .\/ P ) ) ) |
| 37 | 36 | adantr | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X .<_ ( X .\/ P ) /\ Q .<_ ( X .\/ P ) ) <-> ( X .\/ Q ) .<_ ( X .\/ P ) ) ) |
| 38 | 29 31 37 | mpbi2and | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ Q ) .<_ ( X .\/ P ) ) |
| 39 | 1 2 | latasymb | |- ( ( K e. Lat /\ ( X .\/ P ) e. B /\ ( X .\/ Q ) e. B ) -> ( ( ( X .\/ P ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ P ) ) <-> ( X .\/ P ) = ( X .\/ Q ) ) ) |
| 40 | 6 33 20 39 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( ( ( X .\/ P ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ P ) ) <-> ( X .\/ P ) = ( X .\/ Q ) ) ) |
| 41 | 40 | 3adant3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( ( ( X .\/ P ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ P ) ) <-> ( X .\/ P ) = ( X .\/ Q ) ) ) |
| 42 | 41 | adantr | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( ( ( X .\/ P ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ P ) ) <-> ( X .\/ P ) = ( X .\/ Q ) ) ) |
| 43 | 25 38 42 | mpbi2and | |- ( ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ P ) = ( X .\/ Q ) ) |
| 44 | 43 | ex | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( P .<_ ( X .\/ Q ) -> ( X .\/ P ) = ( X .\/ Q ) ) ) |
| 45 | 1 2 3 | latlej2 | |- ( ( K e. Lat /\ X e. B /\ P e. B ) -> P .<_ ( X .\/ P ) ) |
| 46 | 6 7 18 45 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> P .<_ ( X .\/ P ) ) |
| 47 | breq2 | |- ( ( X .\/ P ) = ( X .\/ Q ) -> ( P .<_ ( X .\/ P ) <-> P .<_ ( X .\/ Q ) ) ) |
|
| 48 | 46 47 | syl5ibcom | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( ( X .\/ P ) = ( X .\/ Q ) -> P .<_ ( X .\/ Q ) ) ) |
| 49 | 48 | 3adant3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( ( X .\/ P ) = ( X .\/ Q ) -> P .<_ ( X .\/ Q ) ) ) |
| 50 | 44 49 | impbid | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( P .<_ ( X .\/ Q ) <-> ( X .\/ P ) = ( X .\/ Q ) ) ) |