This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of cvlexchb1 for atoms. (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvlatexch.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| cvlatexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvlatexch.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | cvlatexchb1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlatexch.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | cvlatexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | cvlatexch.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | cvlatl | ⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ AtLat ) |
| 6 | simpr1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) | |
| 7 | simpr3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) | |
| 8 | 1 3 | atncmp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑅 ↔ 𝑃 ≠ 𝑅 ) ) |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ¬ 𝑃 ≤ 𝑅 ↔ 𝑃 ≠ 𝑅 ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 11 | 10 3 | atbase | ⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 12 | 10 1 2 3 | cvlexchb1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑃 ≤ 𝑅 ) → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) |
| 13 | 12 | 3expia | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) ) → ( ¬ 𝑃 ≤ 𝑅 → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) ) |
| 14 | 11 13 | syl3anr3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ¬ 𝑃 ≤ 𝑅 → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) ) |
| 15 | 9 14 | sylbird | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 ≠ 𝑅 → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) ) |
| 16 | 15 | 3impia | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) |