This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with ` ``' ( 1st |`( _V X. { C } ) ) turns any binary operation F with a constant second operand into a function G of the first operand only. This transformation is called "currying". (If this becomes frequently used, we can introduce a new notation for the hypothesis.) (Contributed by NM, 16-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | curry2.1 | |- G = ( F o. `' ( 1st |` ( _V X. { C } ) ) ) |
|
| Assertion | curry2 | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> G = ( x e. A |-> ( x F C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curry2.1 | |- G = ( F o. `' ( 1st |` ( _V X. { C } ) ) ) |
|
| 2 | fnfun | |- ( F Fn ( A X. B ) -> Fun F ) |
|
| 3 | 1stconst | |- ( C e. B -> ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V ) |
|
| 4 | dff1o3 | |- ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V <-> ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -onto-> _V /\ Fun `' ( 1st |` ( _V X. { C } ) ) ) ) |
|
| 5 | 4 | simprbi | |- ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V -> Fun `' ( 1st |` ( _V X. { C } ) ) ) |
| 6 | 3 5 | syl | |- ( C e. B -> Fun `' ( 1st |` ( _V X. { C } ) ) ) |
| 7 | funco | |- ( ( Fun F /\ Fun `' ( 1st |` ( _V X. { C } ) ) ) -> Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ) |
|
| 8 | 2 6 7 | syl2an | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ) |
| 9 | dmco | |- dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = ( `' `' ( 1st |` ( _V X. { C } ) ) " dom F ) |
|
| 10 | fndm | |- ( F Fn ( A X. B ) -> dom F = ( A X. B ) ) |
|
| 11 | 10 | adantr | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> dom F = ( A X. B ) ) |
| 12 | 11 | imaeq2d | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( `' `' ( 1st |` ( _V X. { C } ) ) " dom F ) = ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) ) |
| 13 | imacnvcnv | |- ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = ( ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) |
|
| 14 | df-ima | |- ( ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = ran ( ( 1st |` ( _V X. { C } ) ) |` ( A X. B ) ) |
|
| 15 | resres | |- ( ( 1st |` ( _V X. { C } ) ) |` ( A X. B ) ) = ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) |
|
| 16 | 15 | rneqi | |- ran ( ( 1st |` ( _V X. { C } ) ) |` ( A X. B ) ) = ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) |
| 17 | 13 14 16 | 3eqtri | |- ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) |
| 18 | inxp | |- ( ( _V X. { C } ) i^i ( A X. B ) ) = ( ( _V i^i A ) X. ( { C } i^i B ) ) |
|
| 19 | incom | |- ( _V i^i A ) = ( A i^i _V ) |
|
| 20 | inv1 | |- ( A i^i _V ) = A |
|
| 21 | 19 20 | eqtri | |- ( _V i^i A ) = A |
| 22 | 21 | xpeq1i | |- ( ( _V i^i A ) X. ( { C } i^i B ) ) = ( A X. ( { C } i^i B ) ) |
| 23 | 18 22 | eqtri | |- ( ( _V X. { C } ) i^i ( A X. B ) ) = ( A X. ( { C } i^i B ) ) |
| 24 | snssi | |- ( C e. B -> { C } C_ B ) |
|
| 25 | dfss2 | |- ( { C } C_ B <-> ( { C } i^i B ) = { C } ) |
|
| 26 | 24 25 | sylib | |- ( C e. B -> ( { C } i^i B ) = { C } ) |
| 27 | 26 | xpeq2d | |- ( C e. B -> ( A X. ( { C } i^i B ) ) = ( A X. { C } ) ) |
| 28 | 23 27 | eqtrid | |- ( C e. B -> ( ( _V X. { C } ) i^i ( A X. B ) ) = ( A X. { C } ) ) |
| 29 | 28 | reseq2d | |- ( C e. B -> ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) = ( 1st |` ( A X. { C } ) ) ) |
| 30 | 29 | rneqd | |- ( C e. B -> ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) = ran ( 1st |` ( A X. { C } ) ) ) |
| 31 | 1stconst | |- ( C e. B -> ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -1-1-onto-> A ) |
|
| 32 | f1ofo | |- ( ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -1-1-onto-> A -> ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -onto-> A ) |
|
| 33 | forn | |- ( ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -onto-> A -> ran ( 1st |` ( A X. { C } ) ) = A ) |
|
| 34 | 31 32 33 | 3syl | |- ( C e. B -> ran ( 1st |` ( A X. { C } ) ) = A ) |
| 35 | 30 34 | eqtrd | |- ( C e. B -> ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) = A ) |
| 36 | 17 35 | eqtrid | |- ( C e. B -> ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = A ) |
| 37 | 36 | adantl | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = A ) |
| 38 | 12 37 | eqtrd | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( `' `' ( 1st |` ( _V X. { C } ) ) " dom F ) = A ) |
| 39 | 9 38 | eqtrid | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = A ) |
| 40 | 1 | fneq1i | |- ( G Fn A <-> ( F o. `' ( 1st |` ( _V X. { C } ) ) ) Fn A ) |
| 41 | df-fn | |- ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) Fn A <-> ( Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) /\ dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = A ) ) |
|
| 42 | 40 41 | bitri | |- ( G Fn A <-> ( Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) /\ dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = A ) ) |
| 43 | 8 39 42 | sylanbrc | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> G Fn A ) |
| 44 | dffn5 | |- ( G Fn A <-> G = ( x e. A |-> ( G ` x ) ) ) |
|
| 45 | 43 44 | sylib | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> G = ( x e. A |-> ( G ` x ) ) ) |
| 46 | 1 | fveq1i | |- ( G ` x ) = ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) |
| 47 | dff1o4 | |- ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V <-> ( ( 1st |` ( _V X. { C } ) ) Fn ( _V X. { C } ) /\ `' ( 1st |` ( _V X. { C } ) ) Fn _V ) ) |
|
| 48 | 3 47 | sylib | |- ( C e. B -> ( ( 1st |` ( _V X. { C } ) ) Fn ( _V X. { C } ) /\ `' ( 1st |` ( _V X. { C } ) ) Fn _V ) ) |
| 49 | 48 | simprd | |- ( C e. B -> `' ( 1st |` ( _V X. { C } ) ) Fn _V ) |
| 50 | vex | |- x e. _V |
|
| 51 | fvco2 | |- ( ( `' ( 1st |` ( _V X. { C } ) ) Fn _V /\ x e. _V ) -> ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) |
|
| 52 | 49 50 51 | sylancl | |- ( C e. B -> ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) |
| 53 | 52 | ad2antlr | |- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) |
| 54 | 46 53 | eqtrid | |- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( G ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) |
| 55 | 3 | adantr | |- ( ( C e. B /\ x e. A ) -> ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V ) |
| 56 | 50 | a1i | |- ( ( C e. B /\ x e. A ) -> x e. _V ) |
| 57 | snidg | |- ( C e. B -> C e. { C } ) |
|
| 58 | 57 | adantr | |- ( ( C e. B /\ x e. A ) -> C e. { C } ) |
| 59 | 56 58 | opelxpd | |- ( ( C e. B /\ x e. A ) -> <. x , C >. e. ( _V X. { C } ) ) |
| 60 | 55 59 | jca | |- ( ( C e. B /\ x e. A ) -> ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V /\ <. x , C >. e. ( _V X. { C } ) ) ) |
| 61 | 50 | a1i | |- ( C e. B -> x e. _V ) |
| 62 | 61 57 | opelxpd | |- ( C e. B -> <. x , C >. e. ( _V X. { C } ) ) |
| 63 | 62 | fvresd | |- ( C e. B -> ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = ( 1st ` <. x , C >. ) ) |
| 64 | 63 | adantr | |- ( ( C e. B /\ x e. A ) -> ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = ( 1st ` <. x , C >. ) ) |
| 65 | op1stg | |- ( ( x e. A /\ C e. B ) -> ( 1st ` <. x , C >. ) = x ) |
|
| 66 | 65 | ancoms | |- ( ( C e. B /\ x e. A ) -> ( 1st ` <. x , C >. ) = x ) |
| 67 | 64 66 | eqtrd | |- ( ( C e. B /\ x e. A ) -> ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = x ) |
| 68 | f1ocnvfv | |- ( ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V /\ <. x , C >. e. ( _V X. { C } ) ) -> ( ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = x -> ( `' ( 1st |` ( _V X. { C } ) ) ` x ) = <. x , C >. ) ) |
|
| 69 | 60 67 68 | sylc | |- ( ( C e. B /\ x e. A ) -> ( `' ( 1st |` ( _V X. { C } ) ) ` x ) = <. x , C >. ) |
| 70 | 69 | fveq2d | |- ( ( C e. B /\ x e. A ) -> ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) = ( F ` <. x , C >. ) ) |
| 71 | 70 | adantll | |- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) = ( F ` <. x , C >. ) ) |
| 72 | df-ov | |- ( x F C ) = ( F ` <. x , C >. ) |
|
| 73 | 71 72 | eqtr4di | |- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) = ( x F C ) ) |
| 74 | 54 73 | eqtrd | |- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( G ` x ) = ( x F C ) ) |
| 75 | 74 | mpteq2dva | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( x e. A |-> ( G ` x ) ) = ( x e. A |-> ( x F C ) ) ) |
| 76 | 45 75 | eqtrd | |- ( ( F Fn ( A X. B ) /\ C e. B ) -> G = ( x e. A |-> ( x F C ) ) ) |