This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgbinom.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| srgbinom.m | ⊢ × = ( .r ‘ 𝑅 ) | ||
| srgbinom.t | ⊢ · = ( .g ‘ 𝑅 ) | ||
| srgbinom.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| srgbinom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| srgbinom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| Assertion | csrgbinom | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgbinom.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| 2 | srgbinom.m | ⊢ × = ( .r ‘ 𝑅 ) | |
| 3 | srgbinom.t | ⊢ · = ( .g ‘ 𝑅 ) | |
| 4 | srgbinom.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 5 | srgbinom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 6 | srgbinom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 7 | 3simpb | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) ) |
| 9 | simprl | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐴 ∈ 𝑆 ) | |
| 10 | simprr | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐵 ∈ 𝑆 ) | |
| 11 | simpl2 | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐺 ∈ CMnd ) | |
| 12 | 5 1 | mgpbas | ⊢ 𝑆 = ( Base ‘ 𝐺 ) |
| 13 | 5 2 | mgpplusg | ⊢ × = ( +g ‘ 𝐺 ) |
| 14 | 12 13 | cmncom | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) |
| 15 | 11 9 10 14 | syl3anc | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) |
| 16 | 1 2 3 4 5 6 | srgbinom | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |
| 17 | 8 9 10 15 16 | syl13anc | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |