This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngm.1 | |- G = ( 1st ` R ) |
|
| crngm.2 | |- H = ( 2nd ` R ) |
||
| crngm.3 | |- X = ran G |
||
| Assertion | crngm4 | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A H B ) H ( C H D ) ) = ( ( A H C ) H ( B H D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngm.1 | |- G = ( 1st ` R ) |
|
| 2 | crngm.2 | |- H = ( 2nd ` R ) |
|
| 3 | crngm.3 | |- X = ran G |
|
| 4 | df-3an | |- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( ( A e. X /\ B e. X ) /\ C e. X ) ) |
|
| 5 | 1 2 3 | crngm23 | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) H C ) = ( ( A H C ) H B ) ) |
| 6 | 4 5 | sylan2br | |- ( ( R e. CRingOps /\ ( ( A e. X /\ B e. X ) /\ C e. X ) ) -> ( ( A H B ) H C ) = ( ( A H C ) H B ) ) |
| 7 | 6 | adantrrr | |- ( ( R e. CRingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( A H B ) H C ) = ( ( A H C ) H B ) ) |
| 8 | 7 | oveq1d | |- ( ( R e. CRingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A H B ) H C ) H D ) = ( ( ( A H C ) H B ) H D ) ) |
| 9 | crngorngo | |- ( R e. CRingOps -> R e. RingOps ) |
|
| 10 | 1 2 3 | rngocl | |- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
| 11 | 10 | 3expb | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) ) -> ( A H B ) e. X ) |
| 12 | 11 | adantrr | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( A H B ) e. X ) |
| 13 | simprrl | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> C e. X ) |
|
| 14 | simprrr | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> D e. X ) |
|
| 15 | 12 13 14 | 3jca | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( A H B ) e. X /\ C e. X /\ D e. X ) ) |
| 16 | 1 2 3 | rngoass | |- ( ( R e. RingOps /\ ( ( A H B ) e. X /\ C e. X /\ D e. X ) ) -> ( ( ( A H B ) H C ) H D ) = ( ( A H B ) H ( C H D ) ) ) |
| 17 | 15 16 | syldan | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A H B ) H C ) H D ) = ( ( A H B ) H ( C H D ) ) ) |
| 18 | 9 17 | sylan | |- ( ( R e. CRingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A H B ) H C ) H D ) = ( ( A H B ) H ( C H D ) ) ) |
| 19 | 1 2 3 | rngocl | |- ( ( R e. RingOps /\ A e. X /\ C e. X ) -> ( A H C ) e. X ) |
| 20 | 19 | 3expb | |- ( ( R e. RingOps /\ ( A e. X /\ C e. X ) ) -> ( A H C ) e. X ) |
| 21 | 20 | adantrlr | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ C e. X ) ) -> ( A H C ) e. X ) |
| 22 | 21 | adantrrr | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( A H C ) e. X ) |
| 23 | simprlr | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> B e. X ) |
|
| 24 | 22 23 14 | 3jca | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( A H C ) e. X /\ B e. X /\ D e. X ) ) |
| 25 | 1 2 3 | rngoass | |- ( ( R e. RingOps /\ ( ( A H C ) e. X /\ B e. X /\ D e. X ) ) -> ( ( ( A H C ) H B ) H D ) = ( ( A H C ) H ( B H D ) ) ) |
| 26 | 24 25 | syldan | |- ( ( R e. RingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A H C ) H B ) H D ) = ( ( A H C ) H ( B H D ) ) ) |
| 27 | 9 26 | sylan | |- ( ( R e. CRingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A H C ) H B ) H D ) = ( ( A H C ) H ( B H D ) ) ) |
| 28 | 8 18 27 | 3eqtr3d | |- ( ( R e. CRingOps /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( A H B ) H ( C H D ) ) = ( ( A H C ) H ( B H D ) ) ) |
| 29 | 28 | 3impb | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A H B ) H ( C H D ) ) = ( ( A H C ) H ( B H D ) ) ) |