This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngm.1 | |- G = ( 1st ` R ) |
|
| crngm.2 | |- H = ( 2nd ` R ) |
||
| crngm.3 | |- X = ran G |
||
| Assertion | crngm23 | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) H C ) = ( ( A H C ) H B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngm.1 | |- G = ( 1st ` R ) |
|
| 2 | crngm.2 | |- H = ( 2nd ` R ) |
|
| 3 | crngm.3 | |- X = ran G |
|
| 4 | 1 2 3 | crngocom | |- ( ( R e. CRingOps /\ B e. X /\ C e. X ) -> ( B H C ) = ( C H B ) ) |
| 5 | 4 | 3adant3r1 | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B H C ) = ( C H B ) ) |
| 6 | 5 | oveq2d | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B H C ) ) = ( A H ( C H B ) ) ) |
| 7 | crngorngo | |- ( R e. CRingOps -> R e. RingOps ) |
|
| 8 | 1 2 3 | rngoass | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) H C ) = ( A H ( B H C ) ) ) |
| 9 | 7 8 | sylan | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) H C ) = ( A H ( B H C ) ) ) |
| 10 | 1 2 3 | rngoass | |- ( ( R e. RingOps /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) |
| 11 | 10 | 3exp2 | |- ( R e. RingOps -> ( A e. X -> ( C e. X -> ( B e. X -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) ) ) ) |
| 12 | 11 | com34 | |- ( R e. RingOps -> ( A e. X -> ( B e. X -> ( C e. X -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) ) ) ) |
| 13 | 12 | 3imp2 | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) |
| 14 | 7 13 | sylan | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H C ) H B ) = ( A H ( C H B ) ) ) |
| 15 | 6 9 14 | 3eqtr4d | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) H C ) = ( ( A H C ) H B ) ) |