This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngm.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| crngm.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| crngm.3 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | crngm4 | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝐶 𝐻 𝐷 ) ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 ( 𝐵 𝐻 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngm.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | crngm.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | crngm.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) | |
| 5 | 1 2 3 | crngm23 | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) ) |
| 6 | 4 5 | sylan2br | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) ) |
| 7 | 6 | adantrrr | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) 𝐻 𝐷 ) = ( ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) 𝐻 𝐷 ) ) |
| 9 | crngorngo | ⊢ ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps ) | |
| 10 | 1 2 3 | rngocl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
| 11 | 10 | 3expb | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
| 12 | 11 | adantrr | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
| 13 | simprrl | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐶 ∈ 𝑋 ) | |
| 14 | simprrr | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐷 ∈ 𝑋 ) | |
| 15 | 12 13 14 | 3jca | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) |
| 16 | 1 2 3 | rngoass | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) 𝐻 𝐷 ) = ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝐶 𝐻 𝐷 ) ) ) |
| 17 | 15 16 | syldan | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) 𝐻 𝐷 ) = ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝐶 𝐻 𝐷 ) ) ) |
| 18 | 9 17 | sylan | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) 𝐻 𝐷 ) = ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝐶 𝐻 𝐷 ) ) ) |
| 19 | 1 2 3 | rngocl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
| 20 | 19 | 3expb | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
| 21 | 20 | adantrlr | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
| 22 | 21 | adantrrr | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
| 23 | simprlr | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → 𝐵 ∈ 𝑋 ) | |
| 24 | 22 23 14 | 3jca | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) |
| 25 | 1 2 3 | rngoass | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) 𝐻 𝐷 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 ( 𝐵 𝐻 𝐷 ) ) ) |
| 26 | 24 25 | syldan | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) 𝐻 𝐷 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 ( 𝐵 𝐻 𝐷 ) ) ) |
| 27 | 9 26 | sylan | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) 𝐻 𝐷 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 ( 𝐵 𝐻 𝐷 ) ) ) |
| 28 | 8 18 27 | 3eqtr3d | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝐶 𝐻 𝐷 ) ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 ( 𝐵 𝐻 𝐷 ) ) ) |
| 29 | 28 | 3impb | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 ( 𝐶 𝐻 𝐷 ) ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 ( 𝐵 𝐻 𝐷 ) ) ) |