This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for commutative rings (special case of csrgbinom ): ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) . (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngbinom.s | ||
| crngbinom.m | |||
| crngbinom.t | |||
| crngbinom.a | |||
| crngbinom.g | |||
| crngbinom.e | |||
| Assertion | crngbinom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngbinom.s | ||
| 2 | crngbinom.m | ||
| 3 | crngbinom.t | ||
| 4 | crngbinom.a | ||
| 5 | crngbinom.g | ||
| 6 | crngbinom.e | ||
| 7 | crngring | ||
| 8 | ringsrg | ||
| 9 | 7 8 | syl | |
| 10 | 9 | adantr | |
| 11 | 5 | crngmgp | |
| 12 | 11 | adantr | |
| 13 | simpr | ||
| 14 | 10 12 13 | 3jca | |
| 15 | 1 2 3 4 5 6 | csrgbinom | |
| 16 | 14 15 | sylan |