This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of Gleason p. 130. (Contributed by NM, 9-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | creui | |- ( A e. CC -> E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | |- ( A e. CC -> E. z e. RR E. w e. RR A = ( z + ( _i x. w ) ) ) |
|
| 2 | simpr | |- ( ( z e. RR /\ w e. RR ) -> w e. RR ) |
|
| 3 | eqcom | |- ( ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> ( x + ( _i x. y ) ) = ( z + ( _i x. w ) ) ) |
|
| 4 | cru | |- ( ( ( x e. RR /\ y e. RR ) /\ ( z e. RR /\ w e. RR ) ) -> ( ( x + ( _i x. y ) ) = ( z + ( _i x. w ) ) <-> ( x = z /\ y = w ) ) ) |
|
| 5 | 4 | ancoms | |- ( ( ( z e. RR /\ w e. RR ) /\ ( x e. RR /\ y e. RR ) ) -> ( ( x + ( _i x. y ) ) = ( z + ( _i x. w ) ) <-> ( x = z /\ y = w ) ) ) |
| 6 | 3 5 | bitrid | |- ( ( ( z e. RR /\ w e. RR ) /\ ( x e. RR /\ y e. RR ) ) -> ( ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> ( x = z /\ y = w ) ) ) |
| 7 | 6 | anass1rs | |- ( ( ( ( z e. RR /\ w e. RR ) /\ y e. RR ) /\ x e. RR ) -> ( ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> ( x = z /\ y = w ) ) ) |
| 8 | 7 | rexbidva | |- ( ( ( z e. RR /\ w e. RR ) /\ y e. RR ) -> ( E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> E. x e. RR ( x = z /\ y = w ) ) ) |
| 9 | biidd | |- ( x = z -> ( y = w <-> y = w ) ) |
|
| 10 | 9 | ceqsrexv | |- ( z e. RR -> ( E. x e. RR ( x = z /\ y = w ) <-> y = w ) ) |
| 11 | 10 | ad2antrr | |- ( ( ( z e. RR /\ w e. RR ) /\ y e. RR ) -> ( E. x e. RR ( x = z /\ y = w ) <-> y = w ) ) |
| 12 | 8 11 | bitrd | |- ( ( ( z e. RR /\ w e. RR ) /\ y e. RR ) -> ( E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> y = w ) ) |
| 13 | 12 | ralrimiva | |- ( ( z e. RR /\ w e. RR ) -> A. y e. RR ( E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> y = w ) ) |
| 14 | reu6i | |- ( ( w e. RR /\ A. y e. RR ( E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) <-> y = w ) ) -> E! y e. RR E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
|
| 15 | 2 13 14 | syl2anc | |- ( ( z e. RR /\ w e. RR ) -> E! y e. RR E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
| 16 | eqeq1 | |- ( A = ( z + ( _i x. w ) ) -> ( A = ( x + ( _i x. y ) ) <-> ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) ) |
|
| 17 | 16 | rexbidv | |- ( A = ( z + ( _i x. w ) ) -> ( E. x e. RR A = ( x + ( _i x. y ) ) <-> E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) ) |
| 18 | 17 | reubidv | |- ( A = ( z + ( _i x. w ) ) -> ( E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) <-> E! y e. RR E. x e. RR ( z + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) ) |
| 19 | 15 18 | syl5ibrcom | |- ( ( z e. RR /\ w e. RR ) -> ( A = ( z + ( _i x. w ) ) -> E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) ) ) |
| 20 | 19 | rexlimivv | |- ( E. z e. RR E. w e. RR A = ( z + ( _i x. w ) ) -> E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) ) |
| 21 | 1 20 | syl | |- ( A e. CC -> E! y e. RR E. x e. RR A = ( x + ( _i x. y ) ) ) |