This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ceqsrexv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | ceqsrexv | |- ( A e. B -> ( E. x e. B ( x = A /\ ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsrexv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | df-rex | |- ( E. x e. B ( x = A /\ ph ) <-> E. x ( x e. B /\ ( x = A /\ ph ) ) ) |
|
| 3 | an12 | |- ( ( x = A /\ ( x e. B /\ ph ) ) <-> ( x e. B /\ ( x = A /\ ph ) ) ) |
|
| 4 | 3 | exbii | |- ( E. x ( x = A /\ ( x e. B /\ ph ) ) <-> E. x ( x e. B /\ ( x = A /\ ph ) ) ) |
| 5 | 2 4 | bitr4i | |- ( E. x e. B ( x = A /\ ph ) <-> E. x ( x = A /\ ( x e. B /\ ph ) ) ) |
| 6 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 7 | 6 1 | anbi12d | |- ( x = A -> ( ( x e. B /\ ph ) <-> ( A e. B /\ ps ) ) ) |
| 8 | 7 | ceqsexgv | |- ( A e. B -> ( E. x ( x = A /\ ( x e. B /\ ph ) ) <-> ( A e. B /\ ps ) ) ) |
| 9 | 8 | bianabs | |- ( A e. B -> ( E. x ( x = A /\ ( x e. B /\ ph ) ) <-> ps ) ) |
| 10 | 5 9 | bitrid | |- ( A e. B -> ( E. x e. B ( x = A /\ ph ) <-> ps ) ) |