This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of Gleason p. 130. (Contributed by NM, 9-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | creui | ⊢ ( 𝐴 ∈ ℂ → ∃! 𝑦 ∈ ℝ ∃ 𝑥 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑧 ∈ ℝ ∃ 𝑤 ∈ ℝ 𝐴 = ( 𝑧 + ( i · 𝑤 ) ) ) | |
| 2 | simpr | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) | |
| 3 | eqcom | ⊢ ( ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ↔ ( 𝑥 + ( i · 𝑦 ) ) = ( 𝑧 + ( i · 𝑤 ) ) ) | |
| 4 | cru | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ) → ( ( 𝑥 + ( i · 𝑦 ) ) = ( 𝑧 + ( i · 𝑤 ) ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝑥 + ( i · 𝑦 ) ) = ( 𝑧 + ( i · 𝑤 ) ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 6 | 3 5 | bitrid | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 7 | 6 | anass1rs | ⊢ ( ( ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 8 | 7 | rexbidva | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑥 ∈ ℝ ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 9 | biidd | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 ↔ 𝑦 = 𝑤 ) ) | |
| 10 | 9 | ceqsrexv | ⊢ ( 𝑧 ∈ ℝ → ( ∃ 𝑥 ∈ ℝ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ 𝑦 = 𝑤 ) ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑥 ∈ ℝ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ 𝑦 = 𝑤 ) ) |
| 12 | 8 11 | bitrd | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑥 ∈ ℝ ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 13 | 12 | ralrimiva | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ∀ 𝑦 ∈ ℝ ( ∃ 𝑥 ∈ ℝ ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 14 | reu6i | ⊢ ( ( 𝑤 ∈ ℝ ∧ ∀ 𝑦 ∈ ℝ ( ∃ 𝑥 ∈ ℝ ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ↔ 𝑦 = 𝑤 ) ) → ∃! 𝑦 ∈ ℝ ∃ 𝑥 ∈ ℝ ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 15 | 2 13 14 | syl2anc | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ∃! 𝑦 ∈ ℝ ∃ 𝑥 ∈ ℝ ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
| 16 | eqeq1 | ⊢ ( 𝐴 = ( 𝑧 + ( i · 𝑤 ) ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ↔ ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) ) | |
| 17 | 16 | rexbidv | ⊢ ( 𝐴 = ( 𝑧 + ( i · 𝑤 ) ) → ( ∃ 𝑥 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 18 | 17 | reubidv | ⊢ ( 𝐴 = ( 𝑧 + ( i · 𝑤 ) ) → ( ∃! 𝑦 ∈ ℝ ∃ 𝑥 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ↔ ∃! 𝑦 ∈ ℝ ∃ 𝑥 ∈ ℝ ( 𝑧 + ( i · 𝑤 ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 19 | 15 18 | syl5ibrcom | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( 𝐴 = ( 𝑧 + ( i · 𝑤 ) ) → ∃! 𝑦 ∈ ℝ ∃ 𝑥 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) ) |
| 20 | 19 | rexlimivv | ⊢ ( ∃ 𝑧 ∈ ℝ ∃ 𝑤 ∈ ℝ 𝐴 = ( 𝑧 + ( i · 𝑤 ) ) → ∃! 𝑦 ∈ ℝ ∃ 𝑥 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
| 21 | 1 20 | syl | ⊢ ( 𝐴 ∈ ℂ → ∃! 𝑦 ∈ ℝ ∃ 𝑥 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |