This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossid | |- ,~ _I = _I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equvinv | |- ( y = z <-> E. x ( x = y /\ x = z ) ) |
|
| 2 | ideqg | |- ( y e. _V -> ( x _I y <-> x = y ) ) |
|
| 3 | 2 | elv | |- ( x _I y <-> x = y ) |
| 4 | ideqg | |- ( z e. _V -> ( x _I z <-> x = z ) ) |
|
| 5 | 4 | elv | |- ( x _I z <-> x = z ) |
| 6 | 3 5 | anbi12i | |- ( ( x _I y /\ x _I z ) <-> ( x = y /\ x = z ) ) |
| 7 | 6 | exbii | |- ( E. x ( x _I y /\ x _I z ) <-> E. x ( x = y /\ x = z ) ) |
| 8 | 1 7 | bitr4i | |- ( y = z <-> E. x ( x _I y /\ x _I z ) ) |
| 9 | 8 | opabbii | |- { <. y , z >. | y = z } = { <. y , z >. | E. x ( x _I y /\ x _I z ) } |
| 10 | df-id | |- _I = { <. y , z >. | y = z } |
|
| 11 | df-coss | |- ,~ _I = { <. y , z >. | E. x ( x _I y /\ x _I z ) } |
|
| 12 | 9 10 11 | 3eqtr4ri | |- ,~ _I = _I |