This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of cosets by R : x and y are cosets by R iff there exists a set u such that both x and y are are elements of the R -coset of u (see also the comment of dfec2 ). R is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcoss2 | |- ,~ R = { <. x , y >. | E. u ( x e. [ u ] R /\ y e. [ u ] R ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss | |- ,~ R = { <. x , y >. | E. u ( u R x /\ u R y ) } |
|
| 2 | elecALTV | |- ( ( u e. _V /\ x e. _V ) -> ( x e. [ u ] R <-> u R x ) ) |
|
| 3 | 2 | el2v | |- ( x e. [ u ] R <-> u R x ) |
| 4 | elecALTV | |- ( ( u e. _V /\ y e. _V ) -> ( y e. [ u ] R <-> u R y ) ) |
|
| 5 | 4 | el2v | |- ( y e. [ u ] R <-> u R y ) |
| 6 | 3 5 | anbi12i | |- ( ( x e. [ u ] R /\ y e. [ u ] R ) <-> ( u R x /\ u R y ) ) |
| 7 | 6 | exbii | |- ( E. u ( x e. [ u ] R /\ y e. [ u ] R ) <-> E. u ( u R x /\ u R y ) ) |
| 8 | 7 | opabbii | |- { <. x , y >. | E. u ( x e. [ u ] R /\ y e. [ u ] R ) } = { <. x , y >. | E. u ( u R x /\ u R y ) } |
| 9 | 1 8 | eqtr4i | |- ,~ R = { <. x , y >. | E. u ( x e. [ u ] R /\ y e. [ u ] R ) } |