This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function at _i times a real number less _pi . (Contributed by Paul Chapman, 15-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efimpi | |- ( A e. CC -> ( exp ` ( _i x. ( A - _pi ) ) ) = -u ( exp ` ( _i x. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | subcl | |- ( ( A e. CC /\ _pi e. CC ) -> ( A - _pi ) e. CC ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. CC -> ( A - _pi ) e. CC ) |
| 4 | efival | |- ( ( A - _pi ) e. CC -> ( exp ` ( _i x. ( A - _pi ) ) ) = ( ( cos ` ( A - _pi ) ) + ( _i x. ( sin ` ( A - _pi ) ) ) ) ) |
|
| 5 | 3 4 | syl | |- ( A e. CC -> ( exp ` ( _i x. ( A - _pi ) ) ) = ( ( cos ` ( A - _pi ) ) + ( _i x. ( sin ` ( A - _pi ) ) ) ) ) |
| 6 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 7 | ax-icn | |- _i e. CC |
|
| 8 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 9 | mulcl | |- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
|
| 10 | 7 8 9 | sylancr | |- ( A e. CC -> ( _i x. ( sin ` A ) ) e. CC ) |
| 11 | 6 10 | negdid | |- ( A e. CC -> -u ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( -u ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) ) |
| 12 | cosmpi | |- ( A e. CC -> ( cos ` ( A - _pi ) ) = -u ( cos ` A ) ) |
|
| 13 | sinmpi | |- ( A e. CC -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
|
| 14 | 13 | oveq2d | |- ( A e. CC -> ( _i x. ( sin ` ( A - _pi ) ) ) = ( _i x. -u ( sin ` A ) ) ) |
| 15 | mulneg2 | |- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) |
|
| 16 | 7 8 15 | sylancr | |- ( A e. CC -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 17 | 14 16 | eqtrd | |- ( A e. CC -> ( _i x. ( sin ` ( A - _pi ) ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 18 | 12 17 | oveq12d | |- ( A e. CC -> ( ( cos ` ( A - _pi ) ) + ( _i x. ( sin ` ( A - _pi ) ) ) ) = ( -u ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) ) |
| 19 | 11 18 | eqtr4d | |- ( A e. CC -> -u ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` ( A - _pi ) ) + ( _i x. ( sin ` ( A - _pi ) ) ) ) ) |
| 20 | 5 19 | eqtr4d | |- ( A e. CC -> ( exp ` ( _i x. ( A - _pi ) ) ) = -u ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 21 | efival | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
|
| 22 | 21 | negeqd | |- ( A e. CC -> -u ( exp ` ( _i x. A ) ) = -u ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 23 | 20 22 | eqtr4d | |- ( A e. CC -> ( exp ` ( _i x. ( A - _pi ) ) ) = -u ( exp ` ( _i x. A ) ) ) |