This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cores2 | |- ( dom A C_ C -> ( A o. `' ( `' B |` C ) ) = ( A o. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 | |- dom A = ran `' A |
|
| 2 | 1 | sseq1i | |- ( dom A C_ C <-> ran `' A C_ C ) |
| 3 | cores | |- ( ran `' A C_ C -> ( ( `' B |` C ) o. `' A ) = ( `' B o. `' A ) ) |
|
| 4 | 2 3 | sylbi | |- ( dom A C_ C -> ( ( `' B |` C ) o. `' A ) = ( `' B o. `' A ) ) |
| 5 | cnvco | |- `' ( A o. `' ( `' B |` C ) ) = ( `' `' ( `' B |` C ) o. `' A ) |
|
| 6 | cocnvcnv1 | |- ( `' `' ( `' B |` C ) o. `' A ) = ( ( `' B |` C ) o. `' A ) |
|
| 7 | 5 6 | eqtri | |- `' ( A o. `' ( `' B |` C ) ) = ( ( `' B |` C ) o. `' A ) |
| 8 | cnvco | |- `' ( A o. B ) = ( `' B o. `' A ) |
|
| 9 | 4 7 8 | 3eqtr4g | |- ( dom A C_ C -> `' ( A o. `' ( `' B |` C ) ) = `' ( A o. B ) ) |
| 10 | 9 | cnveqd | |- ( dom A C_ C -> `' `' ( A o. `' ( `' B |` C ) ) = `' `' ( A o. B ) ) |
| 11 | relco | |- Rel ( A o. `' ( `' B |` C ) ) |
|
| 12 | dfrel2 | |- ( Rel ( A o. `' ( `' B |` C ) ) <-> `' `' ( A o. `' ( `' B |` C ) ) = ( A o. `' ( `' B |` C ) ) ) |
|
| 13 | 11 12 | mpbi | |- `' `' ( A o. `' ( `' B |` C ) ) = ( A o. `' ( `' B |` C ) ) |
| 14 | relco | |- Rel ( A o. B ) |
|
| 15 | dfrel2 | |- ( Rel ( A o. B ) <-> `' `' ( A o. B ) = ( A o. B ) ) |
|
| 16 | 14 15 | mpbi | |- `' `' ( A o. B ) = ( A o. B ) |
| 17 | 10 13 16 | 3eqtr3g | |- ( dom A C_ C -> ( A o. `' ( `' B |` C ) ) = ( A o. B ) ) |