This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The connected component containing A is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | conncomp.2 | |- S = U. { x e. ~P X | ( A e. x /\ ( J |`t x ) e. Conn ) } |
|
| Assertion | conncompcld | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> S e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncomp.2 | |- S = U. { x e. ~P X | ( A e. x /\ ( J |`t x ) e. Conn ) } |
|
| 2 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 3 | ssrab2 | |- { x e. ~P X | ( A e. x /\ ( J |`t x ) e. Conn ) } C_ ~P X |
|
| 4 | sspwuni | |- ( { x e. ~P X | ( A e. x /\ ( J |`t x ) e. Conn ) } C_ ~P X <-> U. { x e. ~P X | ( A e. x /\ ( J |`t x ) e. Conn ) } C_ X ) |
|
| 5 | 3 4 | mpbi | |- U. { x e. ~P X | ( A e. x /\ ( J |`t x ) e. Conn ) } C_ X |
| 6 | 1 5 | eqsstri | |- S C_ X |
| 7 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 8 | 7 | adantr | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> X = U. J ) |
| 9 | 6 8 | sseqtrid | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> S C_ U. J ) |
| 10 | eqid | |- U. J = U. J |
|
| 11 | 10 | clsss3 | |- ( ( J e. Top /\ S C_ U. J ) -> ( ( cls ` J ) ` S ) C_ U. J ) |
| 12 | 2 9 11 | syl2an2r | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( ( cls ` J ) ` S ) C_ U. J ) |
| 13 | 12 8 | sseqtrrd | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 14 | 10 | sscls | |- ( ( J e. Top /\ S C_ U. J ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 15 | 2 9 14 | syl2an2r | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 16 | 1 | conncompid | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> A e. S ) |
| 17 | 15 16 | sseldd | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> A e. ( ( cls ` J ) ` S ) ) |
| 18 | simpl | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> J e. ( TopOn ` X ) ) |
|
| 19 | 6 | a1i | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> S C_ X ) |
| 20 | 1 | conncompconn | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t S ) e. Conn ) |
| 21 | clsconn | |- ( ( J e. ( TopOn ` X ) /\ S C_ X /\ ( J |`t S ) e. Conn ) -> ( J |`t ( ( cls ` J ) ` S ) ) e. Conn ) |
|
| 22 | 18 19 20 21 | syl3anc | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t ( ( cls ` J ) ` S ) ) e. Conn ) |
| 23 | 1 | conncompss | |- ( ( ( ( cls ` J ) ` S ) C_ X /\ A e. ( ( cls ` J ) ` S ) /\ ( J |`t ( ( cls ` J ) ` S ) ) e. Conn ) -> ( ( cls ` J ) ` S ) C_ S ) |
| 24 | 13 17 22 23 | syl3anc | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( ( cls ` J ) ` S ) C_ S ) |
| 25 | 10 | iscld4 | |- ( ( J e. Top /\ S C_ U. J ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) C_ S ) ) |
| 26 | 2 9 25 | syl2an2r | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) C_ S ) ) |
| 27 | 24 26 | mpbird | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> S e. ( Clsd ` J ) ) |