This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elnmz.1 | |- N = { x e. X | A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) } |
|
| nmzsubg.2 | |- X = ( Base ` G ) |
||
| nmzsubg.3 | |- .+ = ( +g ` G ) |
||
| Assertion | isnsg4 | |- ( S e. ( NrmSGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ N = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 | |- N = { x e. X | A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) } |
|
| 2 | nmzsubg.2 | |- X = ( Base ` G ) |
|
| 3 | nmzsubg.3 | |- .+ = ( +g ` G ) |
|
| 4 | 2 3 | isnsg | |- ( S e. ( NrmSGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ A. x e. X A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) ) ) |
| 5 | eqcom | |- ( N = X <-> X = N ) |
|
| 6 | 1 | eqeq2i | |- ( X = N <-> X = { x e. X | A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) } ) |
| 7 | rabid2 | |- ( X = { x e. X | A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) } <-> A. x e. X A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) ) |
|
| 8 | 5 6 7 | 3bitri | |- ( N = X <-> A. x e. X A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) ) |
| 9 | 8 | anbi2i | |- ( ( S e. ( SubGrp ` G ) /\ N = X ) <-> ( S e. ( SubGrp ` G ) /\ A. x e. X A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) ) ) |
| 10 | 4 9 | bitr4i | |- ( S e. ( NrmSGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ N = X ) ) |