This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for compsscnv . (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | compsscnvlem | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( y e. ~P A /\ x = ( A \ y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> y = ( A \ x ) ) |
|
| 2 | difss | |- ( A \ x ) C_ A |
|
| 3 | 1 2 | eqsstrdi | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> y C_ A ) |
| 4 | velpw | |- ( y e. ~P A <-> y C_ A ) |
|
| 5 | 3 4 | sylibr | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> y e. ~P A ) |
| 6 | 1 | difeq2d | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( A \ y ) = ( A \ ( A \ x ) ) ) |
| 7 | elpwi | |- ( x e. ~P A -> x C_ A ) |
|
| 8 | 7 | adantr | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> x C_ A ) |
| 9 | dfss4 | |- ( x C_ A <-> ( A \ ( A \ x ) ) = x ) |
|
| 10 | 8 9 | sylib | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( A \ ( A \ x ) ) = x ) |
| 11 | 6 10 | eqtr2d | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> x = ( A \ y ) ) |
| 12 | 5 11 | jca | |- ( ( x e. ~P A /\ y = ( A \ x ) ) -> ( y e. ~P A /\ x = ( A \ y ) ) ) |