This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffval.o | |- O = ( comf ` C ) |
|
| comfffval.b | |- B = ( Base ` C ) |
||
| comfffval.h | |- H = ( Hom ` C ) |
||
| comfffval.x | |- .x. = ( comp ` C ) |
||
| comffval.x | |- ( ph -> X e. B ) |
||
| comffval.y | |- ( ph -> Y e. B ) |
||
| comffval.z | |- ( ph -> Z e. B ) |
||
| Assertion | comffval | |- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval.o | |- O = ( comf ` C ) |
|
| 2 | comfffval.b | |- B = ( Base ` C ) |
|
| 3 | comfffval.h | |- H = ( Hom ` C ) |
|
| 4 | comfffval.x | |- .x. = ( comp ` C ) |
|
| 5 | comffval.x | |- ( ph -> X e. B ) |
|
| 6 | comffval.y | |- ( ph -> Y e. B ) |
|
| 7 | comffval.z | |- ( ph -> Z e. B ) |
|
| 8 | 1 2 3 4 | comfffval | |- O = ( x e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) ) |
| 9 | 8 | a1i | |- ( ph -> O = ( x e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) ) ) |
| 10 | simprl | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> x = <. X , Y >. ) |
|
| 11 | 10 | fveq2d | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` x ) = ( 2nd ` <. X , Y >. ) ) |
| 12 | op2ndg | |- ( ( X e. B /\ Y e. B ) -> ( 2nd ` <. X , Y >. ) = Y ) |
|
| 13 | 5 6 12 | syl2anc | |- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 14 | 13 | adantr | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 15 | 11 14 | eqtrd | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` x ) = Y ) |
| 16 | simprr | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> z = Z ) |
|
| 17 | 15 16 | oveq12d | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( ( 2nd ` x ) H z ) = ( Y H Z ) ) |
| 18 | 10 | fveq2d | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( H ` x ) = ( H ` <. X , Y >. ) ) |
| 19 | df-ov | |- ( X H Y ) = ( H ` <. X , Y >. ) |
|
| 20 | 18 19 | eqtr4di | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( H ` x ) = ( X H Y ) ) |
| 21 | 10 16 | oveq12d | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( x .x. z ) = ( <. X , Y >. .x. Z ) ) |
| 22 | 21 | oveqd | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( g ( x .x. z ) f ) = ( g ( <. X , Y >. .x. Z ) f ) ) |
| 23 | 17 20 22 | mpoeq123dv | |- ( ( ph /\ ( x = <. X , Y >. /\ z = Z ) ) -> ( g e. ( ( 2nd ` x ) H z ) , f e. ( H ` x ) |-> ( g ( x .x. z ) f ) ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
| 24 | 5 6 | opelxpd | |- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 25 | ovex | |- ( Y H Z ) e. _V |
|
| 26 | ovex | |- ( X H Y ) e. _V |
|
| 27 | 25 26 | mpoex | |- ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) e. _V |
| 28 | 27 | a1i | |- ( ph -> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) e. _V ) |
| 29 | 9 23 24 7 28 | ovmpod | |- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |