This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffval.o | |- O = ( comf ` C ) |
|
| comfffval.b | |- B = ( Base ` C ) |
||
| comfffval.h | |- H = ( Hom ` C ) |
||
| comfffval.x | |- .x. = ( comp ` C ) |
||
| comffval.x | |- ( ph -> X e. B ) |
||
| comffval.y | |- ( ph -> Y e. B ) |
||
| comffval.z | |- ( ph -> Z e. B ) |
||
| comfval.f | |- ( ph -> F e. ( X H Y ) ) |
||
| comfval.g | |- ( ph -> G e. ( Y H Z ) ) |
||
| Assertion | comfval | |- ( ph -> ( G ( <. X , Y >. O Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval.o | |- O = ( comf ` C ) |
|
| 2 | comfffval.b | |- B = ( Base ` C ) |
|
| 3 | comfffval.h | |- H = ( Hom ` C ) |
|
| 4 | comfffval.x | |- .x. = ( comp ` C ) |
|
| 5 | comffval.x | |- ( ph -> X e. B ) |
|
| 6 | comffval.y | |- ( ph -> Y e. B ) |
|
| 7 | comffval.z | |- ( ph -> Z e. B ) |
|
| 8 | comfval.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 9 | comfval.g | |- ( ph -> G e. ( Y H Z ) ) |
|
| 10 | 1 2 3 4 5 6 7 | comffval | |- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
| 11 | oveq12 | |- ( ( g = G /\ f = F ) -> ( g ( <. X , Y >. .x. Z ) f ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
|
| 12 | 11 | adantl | |- ( ( ph /\ ( g = G /\ f = F ) ) -> ( g ( <. X , Y >. .x. Z ) f ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
| 13 | ovexd | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) e. _V ) |
|
| 14 | 10 12 9 8 13 | ovmpod | |- ( ph -> ( G ( <. X , Y >. O Z ) F ) = ( G ( <. X , Y >. .x. Z ) F ) ) |