This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffval.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| comfffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| comfffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| comfffval.x | ⊢ · = ( comp ‘ 𝐶 ) | ||
| comffval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| comffval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| comffval.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | comffval | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| 2 | comfffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | comfffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | comfffval.x | ⊢ · = ( comp ‘ 𝐶 ) | |
| 5 | comffval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | comffval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | comffval.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | 1 2 3 4 | comfffval | ⊢ 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑧 ) 𝑓 ) ) ) |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 𝑂 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑧 ) 𝑓 ) ) ) ) |
| 10 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑥 = 〈 𝑋 , 𝑌 〉 ) | |
| 11 | 10 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 12 | op2ndg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) | |
| 13 | 5 6 12 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 〈 𝑋 , 𝑌 〉 ) = 𝑌 ) |
| 15 | 11 14 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 2nd ‘ 𝑥 ) = 𝑌 ) |
| 16 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → 𝑧 = 𝑍 ) | |
| 17 | 15 16 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( ( 2nd ‘ 𝑥 ) 𝐻 𝑧 ) = ( 𝑌 𝐻 𝑍 ) ) |
| 18 | 10 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 19 | df-ov | ⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 20 | 18 19 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝐻 ‘ 𝑥 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 21 | 10 16 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑥 · 𝑧 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) |
| 22 | 21 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ( 𝑥 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) |
| 23 | 17 20 22 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 〈 𝑋 , 𝑌 〉 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑥 ) ↦ ( 𝑔 ( 𝑥 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
| 24 | 5 6 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 25 | ovex | ⊢ ( 𝑌 𝐻 𝑍 ) ∈ V | |
| 26 | ovex | ⊢ ( 𝑋 𝐻 𝑌 ) ∈ V | |
| 27 | 25 26 | mpoex | ⊢ ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ∈ V |
| 28 | 27 | a1i | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ∈ V ) |
| 29 | 9 23 24 7 28 | ovmpod | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |