This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffval2.o | |- O = ( comf ` C ) |
|
| comfffval2.b | |- B = ( Base ` C ) |
||
| comfffval2.h | |- H = ( Homf ` C ) |
||
| comfffval2.x | |- .x. = ( comp ` C ) |
||
| Assertion | comfffval2 | |- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval2.o | |- O = ( comf ` C ) |
|
| 2 | comfffval2.b | |- B = ( Base ` C ) |
|
| 3 | comfffval2.h | |- H = ( Homf ` C ) |
|
| 4 | comfffval2.x | |- .x. = ( comp ` C ) |
|
| 5 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 6 | 1 2 5 4 | comfffval | |- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| 7 | xp2nd | |- ( x e. ( B X. B ) -> ( 2nd ` x ) e. B ) |
|
| 8 | 7 | adantr | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( 2nd ` x ) e. B ) |
| 9 | simpr | |- ( ( x e. ( B X. B ) /\ y e. B ) -> y e. B ) |
|
| 10 | 3 2 5 8 9 | homfval | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( ( 2nd ` x ) H y ) = ( ( 2nd ` x ) ( Hom ` C ) y ) ) |
| 11 | xp1st | |- ( x e. ( B X. B ) -> ( 1st ` x ) e. B ) |
|
| 12 | 11 | adantr | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( 1st ` x ) e. B ) |
| 13 | 3 2 5 12 8 | homfval | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( ( 1st ` x ) H ( 2nd ` x ) ) = ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) ) |
| 14 | df-ov | |- ( ( 1st ` x ) H ( 2nd ` x ) ) = ( H ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 15 | df-ov | |- ( ( 1st ` x ) ( Hom ` C ) ( 2nd ` x ) ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 16 | 13 14 15 | 3eqtr3g | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( H ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 17 | 1st2nd2 | |- ( x e. ( B X. B ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 18 | 17 | adantr | |- ( ( x e. ( B X. B ) /\ y e. B ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 19 | 18 | fveq2d | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( H ` x ) = ( H ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 20 | 18 | fveq2d | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( ( Hom ` C ) ` x ) = ( ( Hom ` C ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 21 | 16 19 20 | 3eqtr4d | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( H ` x ) = ( ( Hom ` C ) ` x ) ) |
| 22 | eqidd | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( g ( x .x. y ) f ) = ( g ( x .x. y ) f ) ) |
|
| 23 | 10 21 22 | mpoeq123dv | |- ( ( x e. ( B X. B ) /\ y e. B ) -> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) = ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| 24 | 23 | mpoeq3ia | |- ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) ( Hom ` C ) y ) , f e. ( ( Hom ` C ) ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| 25 | 6 24 | eqtr4i | |- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |