This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffval2.o | |- O = ( comf ` C ) |
|
| comfffval2.b | |- B = ( Base ` C ) |
||
| comfffval2.h | |- H = ( Homf ` C ) |
||
| comfffval2.x | |- .x. = ( comp ` C ) |
||
| comffval2.x | |- ( ph -> X e. B ) |
||
| comffval2.y | |- ( ph -> Y e. B ) |
||
| comffval2.z | |- ( ph -> Z e. B ) |
||
| Assertion | comffval2 | |- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval2.o | |- O = ( comf ` C ) |
|
| 2 | comfffval2.b | |- B = ( Base ` C ) |
|
| 3 | comfffval2.h | |- H = ( Homf ` C ) |
|
| 4 | comfffval2.x | |- .x. = ( comp ` C ) |
|
| 5 | comffval2.x | |- ( ph -> X e. B ) |
|
| 6 | comffval2.y | |- ( ph -> Y e. B ) |
|
| 7 | comffval2.z | |- ( ph -> Z e. B ) |
|
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | 1 2 8 4 5 6 7 | comffval | |- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y ( Hom ` C ) Z ) , f e. ( X ( Hom ` C ) Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
| 10 | 3 2 8 6 7 | homfval | |- ( ph -> ( Y H Z ) = ( Y ( Hom ` C ) Z ) ) |
| 11 | 3 2 8 5 6 | homfval | |- ( ph -> ( X H Y ) = ( X ( Hom ` C ) Y ) ) |
| 12 | eqidd | |- ( ph -> ( g ( <. X , Y >. .x. Z ) f ) = ( g ( <. X , Y >. .x. Z ) f ) ) |
|
| 13 | 10 11 12 | mpoeq123dv | |- ( ph -> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) = ( g e. ( Y ( Hom ` C ) Z ) , f e. ( X ( Hom ` C ) Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |
| 14 | 9 13 | eqtr4d | |- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. .x. Z ) f ) ) ) |