This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of a polynomial multiplied on the right by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sclmul.p | |- P = ( Poly1 ` R ) |
|
| coe1sclmul.b | |- B = ( Base ` P ) |
||
| coe1sclmul.k | |- K = ( Base ` R ) |
||
| coe1sclmul.a | |- A = ( algSc ` P ) |
||
| coe1sclmul.t | |- .xb = ( .r ` P ) |
||
| coe1sclmul.u | |- .x. = ( .r ` R ) |
||
| Assertion | coe1sclmul2 | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( coe1 ` ( Y .xb ( A ` X ) ) ) = ( ( coe1 ` Y ) oF .x. ( NN0 X. { X } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sclmul.p | |- P = ( Poly1 ` R ) |
|
| 2 | coe1sclmul.b | |- B = ( Base ` P ) |
|
| 3 | coe1sclmul.k | |- K = ( Base ` R ) |
|
| 4 | coe1sclmul.a | |- A = ( algSc ` P ) |
|
| 5 | coe1sclmul.t | |- .xb = ( .r ` P ) |
|
| 6 | coe1sclmul.u | |- .x. = ( .r ` R ) |
|
| 7 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 8 | eqid | |- ( var1 ` R ) = ( var1 ` R ) |
|
| 9 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 10 | eqid | |- ( mulGrp ` P ) = ( mulGrp ` P ) |
|
| 11 | eqid | |- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
|
| 12 | simp3 | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> Y e. B ) |
|
| 13 | simp1 | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> R e. Ring ) |
|
| 14 | simp2 | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> X e. K ) |
|
| 15 | 0nn0 | |- 0 e. NN0 |
|
| 16 | 15 | a1i | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> 0 e. NN0 ) |
| 17 | 7 3 1 8 9 10 11 2 5 6 12 13 14 16 | coe1tmmul2 | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( coe1 ` ( Y .xb ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) = ( x e. NN0 |-> if ( 0 <_ x , ( ( ( coe1 ` Y ) ` ( x - 0 ) ) .x. X ) , ( 0g ` R ) ) ) ) |
| 18 | 3 1 8 9 10 11 4 | ply1scltm | |- ( ( R e. Ring /\ X e. K ) -> ( A ` X ) = ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
| 19 | 18 | 3adant3 | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( A ` X ) = ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) |
| 20 | 19 | oveq2d | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( Y .xb ( A ` X ) ) = ( Y .xb ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) |
| 21 | 20 | fveq2d | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( coe1 ` ( Y .xb ( A ` X ) ) ) = ( coe1 ` ( Y .xb ( X ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) ) |
| 22 | nn0ex | |- NN0 e. _V |
|
| 23 | 22 | a1i | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> NN0 e. _V ) |
| 24 | fvexd | |- ( ( ( R e. Ring /\ X e. K /\ Y e. B ) /\ x e. NN0 ) -> ( ( coe1 ` Y ) ` x ) e. _V ) |
|
| 25 | simpl2 | |- ( ( ( R e. Ring /\ X e. K /\ Y e. B ) /\ x e. NN0 ) -> X e. K ) |
|
| 26 | eqid | |- ( coe1 ` Y ) = ( coe1 ` Y ) |
|
| 27 | 26 2 1 3 | coe1f | |- ( Y e. B -> ( coe1 ` Y ) : NN0 --> K ) |
| 28 | 27 | feqmptd | |- ( Y e. B -> ( coe1 ` Y ) = ( x e. NN0 |-> ( ( coe1 ` Y ) ` x ) ) ) |
| 29 | 28 | 3ad2ant3 | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( coe1 ` Y ) = ( x e. NN0 |-> ( ( coe1 ` Y ) ` x ) ) ) |
| 30 | fconstmpt | |- ( NN0 X. { X } ) = ( x e. NN0 |-> X ) |
|
| 31 | 30 | a1i | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( NN0 X. { X } ) = ( x e. NN0 |-> X ) ) |
| 32 | 23 24 25 29 31 | offval2 | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( ( coe1 ` Y ) oF .x. ( NN0 X. { X } ) ) = ( x e. NN0 |-> ( ( ( coe1 ` Y ) ` x ) .x. X ) ) ) |
| 33 | nn0ge0 | |- ( x e. NN0 -> 0 <_ x ) |
|
| 34 | 33 | iftrued | |- ( x e. NN0 -> if ( 0 <_ x , ( ( ( coe1 ` Y ) ` ( x - 0 ) ) .x. X ) , ( 0g ` R ) ) = ( ( ( coe1 ` Y ) ` ( x - 0 ) ) .x. X ) ) |
| 35 | nn0cn | |- ( x e. NN0 -> x e. CC ) |
|
| 36 | 35 | subid1d | |- ( x e. NN0 -> ( x - 0 ) = x ) |
| 37 | 36 | fveq2d | |- ( x e. NN0 -> ( ( coe1 ` Y ) ` ( x - 0 ) ) = ( ( coe1 ` Y ) ` x ) ) |
| 38 | 37 | oveq1d | |- ( x e. NN0 -> ( ( ( coe1 ` Y ) ` ( x - 0 ) ) .x. X ) = ( ( ( coe1 ` Y ) ` x ) .x. X ) ) |
| 39 | 34 38 | eqtrd | |- ( x e. NN0 -> if ( 0 <_ x , ( ( ( coe1 ` Y ) ` ( x - 0 ) ) .x. X ) , ( 0g ` R ) ) = ( ( ( coe1 ` Y ) ` x ) .x. X ) ) |
| 40 | 39 | mpteq2ia | |- ( x e. NN0 |-> if ( 0 <_ x , ( ( ( coe1 ` Y ) ` ( x - 0 ) ) .x. X ) , ( 0g ` R ) ) ) = ( x e. NN0 |-> ( ( ( coe1 ` Y ) ` x ) .x. X ) ) |
| 41 | 32 40 | eqtr4di | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( ( coe1 ` Y ) oF .x. ( NN0 X. { X } ) ) = ( x e. NN0 |-> if ( 0 <_ x , ( ( ( coe1 ` Y ) ` ( x - 0 ) ) .x. X ) , ( 0g ` R ) ) ) ) |
| 42 | 17 21 41 | 3eqtr4d | |- ( ( R e. Ring /\ X e. K /\ Y e. B ) -> ( coe1 ` ( Y .xb ( A ` X ) ) ) = ( ( coe1 ` Y ) oF .x. ( NN0 X. { X } ) ) ) |