This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of a polynomial multiplied on the right by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sclmul.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| coe1sclmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1sclmul.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| coe1sclmul.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| coe1sclmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | ||
| coe1sclmul.u | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | coe1sclmul2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( coe1 ‘ ( 𝑌 ∙ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( coe1 ‘ 𝑌 ) ∘f · ( ℕ0 × { 𝑋 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sclmul.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | coe1sclmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | coe1sclmul.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | coe1sclmul.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 5 | coe1sclmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | |
| 6 | coe1sclmul.u | ⊢ · = ( .r ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 10 | eqid | ⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) | |
| 11 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | |
| 12 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 13 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Ring ) | |
| 14 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐾 ) | |
| 15 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 16 | 15 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 0 ∈ ℕ0 ) |
| 17 | 7 3 1 8 9 10 11 2 5 6 12 13 14 16 | coe1tmmul2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( coe1 ‘ ( 𝑌 ∙ ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 0 ≤ 𝑥 , ( ( ( coe1 ‘ 𝑌 ) ‘ ( 𝑥 − 0 ) ) · 𝑋 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 18 | 3 1 8 9 10 11 4 | ply1scltm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∙ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑌 ∙ ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( coe1 ‘ ( 𝑌 ∙ ( 𝐴 ‘ 𝑋 ) ) ) = ( coe1 ‘ ( 𝑌 ∙ ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 22 | nn0ex | ⊢ ℕ0 ∈ V | |
| 23 | 22 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ℕ0 ∈ V ) |
| 24 | fvexd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑌 ) ‘ 𝑥 ) ∈ V ) | |
| 25 | simpl2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑋 ∈ 𝐾 ) | |
| 26 | eqid | ⊢ ( coe1 ‘ 𝑌 ) = ( coe1 ‘ 𝑌 ) | |
| 27 | 26 2 1 3 | coe1f | ⊢ ( 𝑌 ∈ 𝐵 → ( coe1 ‘ 𝑌 ) : ℕ0 ⟶ 𝐾 ) |
| 28 | 27 | feqmptd | ⊢ ( 𝑌 ∈ 𝐵 → ( coe1 ‘ 𝑌 ) = ( 𝑥 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑌 ) ‘ 𝑥 ) ) ) |
| 29 | 28 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( coe1 ‘ 𝑌 ) = ( 𝑥 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑌 ) ‘ 𝑥 ) ) ) |
| 30 | fconstmpt | ⊢ ( ℕ0 × { 𝑋 } ) = ( 𝑥 ∈ ℕ0 ↦ 𝑋 ) | |
| 31 | 30 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( ℕ0 × { 𝑋 } ) = ( 𝑥 ∈ ℕ0 ↦ 𝑋 ) ) |
| 32 | 23 24 25 29 31 | offval2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑌 ) ∘f · ( ℕ0 × { 𝑋 } ) ) = ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑌 ) ‘ 𝑥 ) · 𝑋 ) ) ) |
| 33 | nn0ge0 | ⊢ ( 𝑥 ∈ ℕ0 → 0 ≤ 𝑥 ) | |
| 34 | 33 | iftrued | ⊢ ( 𝑥 ∈ ℕ0 → if ( 0 ≤ 𝑥 , ( ( ( coe1 ‘ 𝑌 ) ‘ ( 𝑥 − 0 ) ) · 𝑋 ) , ( 0g ‘ 𝑅 ) ) = ( ( ( coe1 ‘ 𝑌 ) ‘ ( 𝑥 − 0 ) ) · 𝑋 ) ) |
| 35 | nn0cn | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ ) | |
| 36 | 35 | subid1d | ⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 − 0 ) = 𝑥 ) |
| 37 | 36 | fveq2d | ⊢ ( 𝑥 ∈ ℕ0 → ( ( coe1 ‘ 𝑌 ) ‘ ( 𝑥 − 0 ) ) = ( ( coe1 ‘ 𝑌 ) ‘ 𝑥 ) ) |
| 38 | 37 | oveq1d | ⊢ ( 𝑥 ∈ ℕ0 → ( ( ( coe1 ‘ 𝑌 ) ‘ ( 𝑥 − 0 ) ) · 𝑋 ) = ( ( ( coe1 ‘ 𝑌 ) ‘ 𝑥 ) · 𝑋 ) ) |
| 39 | 34 38 | eqtrd | ⊢ ( 𝑥 ∈ ℕ0 → if ( 0 ≤ 𝑥 , ( ( ( coe1 ‘ 𝑌 ) ‘ ( 𝑥 − 0 ) ) · 𝑋 ) , ( 0g ‘ 𝑅 ) ) = ( ( ( coe1 ‘ 𝑌 ) ‘ 𝑥 ) · 𝑋 ) ) |
| 40 | 39 | mpteq2ia | ⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 0 ≤ 𝑥 , ( ( ( coe1 ‘ 𝑌 ) ‘ ( 𝑥 − 0 ) ) · 𝑋 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑌 ) ‘ 𝑥 ) · 𝑋 ) ) |
| 41 | 32 40 | eqtr4di | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑌 ) ∘f · ( ℕ0 × { 𝑋 } ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 0 ≤ 𝑥 , ( ( ( coe1 ‘ 𝑌 ) ‘ ( 𝑥 − 0 ) ) · 𝑋 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 42 | 17 21 41 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( coe1 ‘ ( 𝑌 ∙ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( coe1 ‘ 𝑌 ) ∘f · ( ℕ0 × { 𝑋 } ) ) ) |