This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fval.a | |- A = ( coe1 ` F ) |
|
| coe1f2.b | |- B = ( Base ` P ) |
||
| coe1f2.p | |- P = ( PwSer1 ` R ) |
||
| coe1fval3.g | |- G = ( y e. NN0 |-> ( 1o X. { y } ) ) |
||
| Assertion | coe1fval3 | |- ( F e. B -> A = ( F o. G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | |- A = ( coe1 ` F ) |
|
| 2 | coe1f2.b | |- B = ( Base ` P ) |
|
| 3 | coe1f2.p | |- P = ( PwSer1 ` R ) |
|
| 4 | coe1fval3.g | |- G = ( y e. NN0 |-> ( 1o X. { y } ) ) |
|
| 5 | 1 | coe1fval | |- ( F e. B -> A = ( y e. NN0 |-> ( F ` ( 1o X. { y } ) ) ) ) |
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | 3 2 6 | psr1basf | |- ( F e. B -> F : ( NN0 ^m 1o ) --> ( Base ` R ) ) |
| 8 | ssv | |- ( Base ` R ) C_ _V |
|
| 9 | fss | |- ( ( F : ( NN0 ^m 1o ) --> ( Base ` R ) /\ ( Base ` R ) C_ _V ) -> F : ( NN0 ^m 1o ) --> _V ) |
|
| 10 | 7 8 9 | sylancl | |- ( F e. B -> F : ( NN0 ^m 1o ) --> _V ) |
| 11 | fconst6g | |- ( y e. NN0 -> ( 1o X. { y } ) : 1o --> NN0 ) |
|
| 12 | 11 | adantl | |- ( ( F : ( NN0 ^m 1o ) --> _V /\ y e. NN0 ) -> ( 1o X. { y } ) : 1o --> NN0 ) |
| 13 | nn0ex | |- NN0 e. _V |
|
| 14 | 1oex | |- 1o e. _V |
|
| 15 | 13 14 | elmap | |- ( ( 1o X. { y } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { y } ) : 1o --> NN0 ) |
| 16 | 12 15 | sylibr | |- ( ( F : ( NN0 ^m 1o ) --> _V /\ y e. NN0 ) -> ( 1o X. { y } ) e. ( NN0 ^m 1o ) ) |
| 17 | 4 | a1i | |- ( F : ( NN0 ^m 1o ) --> _V -> G = ( y e. NN0 |-> ( 1o X. { y } ) ) ) |
| 18 | id | |- ( F : ( NN0 ^m 1o ) --> _V -> F : ( NN0 ^m 1o ) --> _V ) |
|
| 19 | 18 | feqmptd | |- ( F : ( NN0 ^m 1o ) --> _V -> F = ( x e. ( NN0 ^m 1o ) |-> ( F ` x ) ) ) |
| 20 | fveq2 | |- ( x = ( 1o X. { y } ) -> ( F ` x ) = ( F ` ( 1o X. { y } ) ) ) |
|
| 21 | 16 17 19 20 | fmptco | |- ( F : ( NN0 ^m 1o ) --> _V -> ( F o. G ) = ( y e. NN0 |-> ( F ` ( 1o X. { y } ) ) ) ) |
| 22 | 10 21 | syl | |- ( F e. B -> ( F o. G ) = ( y e. NN0 |-> ( F ` ( 1o X. { y } ) ) ) ) |
| 23 | 5 22 | eqtr4d | |- ( F e. B -> A = ( F o. G ) ) |