This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | coe1fval.a | |- A = ( coe1 ` F ) |
|
| Assertion | coe1fval | |- ( F e. V -> A = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | |- A = ( coe1 ` F ) |
|
| 2 | elex | |- ( F e. V -> F e. _V ) |
|
| 3 | fveq1 | |- ( f = F -> ( f ` ( 1o X. { n } ) ) = ( F ` ( 1o X. { n } ) ) ) |
|
| 4 | 3 | mpteq2dv | |- ( f = F -> ( n e. NN0 |-> ( f ` ( 1o X. { n } ) ) ) = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |
| 5 | df-coe1 | |- coe1 = ( f e. _V |-> ( n e. NN0 |-> ( f ` ( 1o X. { n } ) ) ) ) |
|
| 6 | nn0ex | |- NN0 e. _V |
|
| 7 | 6 | mptex | |- ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) e. _V |
| 8 | 4 5 7 | fvmpt | |- ( F e. _V -> ( coe1 ` F ) = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |
| 9 | 1 8 | eqtrid | |- ( F e. _V -> A = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |
| 10 | 2 9 | syl | |- ( F e. V -> A = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |