This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021) Avoid ax-12 . (Revised by TM, 31-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnv0 | |- `' (/) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 | |- -. y (/) z |
|
| 2 | 1 | intnan | |- -. ( x = <. z , y >. /\ y (/) z ) |
| 3 | 2 | nex | |- -. E. y ( x = <. z , y >. /\ y (/) z ) |
| 4 | 3 | nex | |- -. E. z E. y ( x = <. z , y >. /\ y (/) z ) |
| 5 | df-cnv | |- `' (/) = { <. z , y >. | y (/) z } |
|
| 6 | 5 | eleq2i | |- ( x e. `' (/) <-> x e. { <. z , y >. | y (/) z } ) |
| 7 | elopabw | |- ( x e. _V -> ( x e. { <. z , y >. | y (/) z } <-> E. z E. y ( x = <. z , y >. /\ y (/) z ) ) ) |
|
| 8 | 7 | elv | |- ( x e. { <. z , y >. | y (/) z } <-> E. z E. y ( x = <. z , y >. /\ y (/) z ) ) |
| 9 | 6 8 | bitri | |- ( x e. `' (/) <-> E. z E. y ( x = <. z , y >. /\ y (/) z ) ) |
| 10 | 4 9 | mtbir | |- -. x e. `' (/) |
| 11 | 10 | nel0 | |- `' (/) = (/) |