This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istsr.1 | |- X = dom R |
|
| Assertion | istsr | |- ( R e. TosetRel <-> ( R e. PosetRel /\ ( X X. X ) C_ ( R u. `' R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istsr.1 | |- X = dom R |
|
| 2 | dmeq | |- ( r = R -> dom r = dom R ) |
|
| 3 | 2 1 | eqtr4di | |- ( r = R -> dom r = X ) |
| 4 | 3 | sqxpeqd | |- ( r = R -> ( dom r X. dom r ) = ( X X. X ) ) |
| 5 | id | |- ( r = R -> r = R ) |
|
| 6 | cnveq | |- ( r = R -> `' r = `' R ) |
|
| 7 | 5 6 | uneq12d | |- ( r = R -> ( r u. `' r ) = ( R u. `' R ) ) |
| 8 | 4 7 | sseq12d | |- ( r = R -> ( ( dom r X. dom r ) C_ ( r u. `' r ) <-> ( X X. X ) C_ ( R u. `' R ) ) ) |
| 9 | df-tsr | |- TosetRel = { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) } |
|
| 10 | 8 9 | elrab2 | |- ( R e. TosetRel <-> ( R e. PosetRel /\ ( X X. X ) C_ ( R u. `' R ) ) ) |