This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Cartesian product of three classes. Compare df-xp . (Contributed by FL, 6-Nov-2013) (Proof shortened by Mario Carneiro, 3-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfxp3 | |- ( ( A X. B ) X. C ) = { <. <. x , y >. , z >. | ( x e. A /\ y e. B /\ z e. C ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd | |- ( u = <. x , y >. -> ( z e. C <-> z e. C ) ) |
|
| 2 | 1 | dfoprab4 | |- { <. u , z >. | ( u e. ( A X. B ) /\ z e. C ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z e. C ) } |
| 3 | df-xp | |- ( ( A X. B ) X. C ) = { <. u , z >. | ( u e. ( A X. B ) /\ z e. C ) } |
|
| 4 | df-3an | |- ( ( x e. A /\ y e. B /\ z e. C ) <-> ( ( x e. A /\ y e. B ) /\ z e. C ) ) |
|
| 5 | 4 | oprabbii | |- { <. <. x , y >. , z >. | ( x e. A /\ y e. B /\ z e. C ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z e. C ) } |
| 6 | 2 3 5 | 3eqtr4i | |- ( ( A X. B ) X. C ) = { <. <. x , y >. , z >. | ( x e. A /\ y e. B /\ z e. C ) } |