This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnvopab as of 7-Jun-2025. (Contributed by NM, 11-Dec-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvopabOLD | |- `' { <. x , y >. | ph } = { <. y , x >. | ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' { <. x , y >. | ph } |
|
| 2 | relopabv | |- Rel { <. y , x >. | ph } |
|
| 3 | vopelopabsb | |- ( <. w , z >. e. { <. x , y >. | ph } <-> [ w / x ] [ z / y ] ph ) |
|
| 4 | sbcom2 | |- ( [ w / x ] [ z / y ] ph <-> [ z / y ] [ w / x ] ph ) |
|
| 5 | 3 4 | bitri | |- ( <. w , z >. e. { <. x , y >. | ph } <-> [ z / y ] [ w / x ] ph ) |
| 6 | vex | |- z e. _V |
|
| 7 | vex | |- w e. _V |
|
| 8 | 6 7 | opelcnv | |- ( <. z , w >. e. `' { <. x , y >. | ph } <-> <. w , z >. e. { <. x , y >. | ph } ) |
| 9 | vopelopabsb | |- ( <. z , w >. e. { <. y , x >. | ph } <-> [ z / y ] [ w / x ] ph ) |
|
| 10 | 5 8 9 | 3bitr4i | |- ( <. z , w >. e. `' { <. x , y >. | ph } <-> <. z , w >. e. { <. y , x >. | ph } ) |
| 11 | 1 2 10 | eqrelriiv | |- `' { <. x , y >. | ph } = { <. y , x >. | ph } |