This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnvf1o . (Contributed by Mario Carneiro, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvf1olem | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> ( C e. `' A /\ B = U. `' { C } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C = U. `' { B } ) |
|
| 2 | 1st2nd | |- ( ( Rel A /\ B e. A ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
|
| 3 | 2 | adantrr | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
| 4 | 3 | sneqd | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> { B } = { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) |
| 5 | 4 | cnveqd | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> `' { B } = `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) |
| 6 | 5 | unieqd | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> U. `' { B } = U. `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) |
| 7 | 1 6 | eqtrd | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C = U. `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) |
| 8 | opswap | |- U. `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } = <. ( 2nd ` B ) , ( 1st ` B ) >. |
|
| 9 | 7 8 | eqtrdi | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C = <. ( 2nd ` B ) , ( 1st ` B ) >. ) |
| 10 | simprl | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> B e. A ) |
|
| 11 | 3 10 | eqeltrrd | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> <. ( 1st ` B ) , ( 2nd ` B ) >. e. A ) |
| 12 | fvex | |- ( 2nd ` B ) e. _V |
|
| 13 | fvex | |- ( 1st ` B ) e. _V |
|
| 14 | 12 13 | opelcnv | |- ( <. ( 2nd ` B ) , ( 1st ` B ) >. e. `' A <-> <. ( 1st ` B ) , ( 2nd ` B ) >. e. A ) |
| 15 | 11 14 | sylibr | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> <. ( 2nd ` B ) , ( 1st ` B ) >. e. `' A ) |
| 16 | 9 15 | eqeltrd | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C e. `' A ) |
| 17 | opswap | |- U. `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } = <. ( 1st ` B ) , ( 2nd ` B ) >. |
|
| 18 | 17 | eqcomi | |- <. ( 1st ` B ) , ( 2nd ` B ) >. = U. `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } |
| 19 | 9 | sneqd | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> { C } = { <. ( 2nd ` B ) , ( 1st ` B ) >. } ) |
| 20 | 19 | cnveqd | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> `' { C } = `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } ) |
| 21 | 20 | unieqd | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> U. `' { C } = U. `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } ) |
| 22 | 18 3 21 | 3eqtr4a | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> B = U. `' { C } ) |
| 23 | 16 22 | jca | |- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> ( C e. `' A /\ B = U. `' { C } ) ) |