This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqeqd.1 | |- ( ph -> A e. CC ) |
|
| sqeqd.2 | |- ( ph -> B e. CC ) |
||
| sqeqd.3 | |- ( ph -> ( A ^ 2 ) = ( B ^ 2 ) ) |
||
| sqeqd.4 | |- ( ph -> 0 <_ ( Re ` A ) ) |
||
| sqeqd.5 | |- ( ph -> 0 <_ ( Re ` B ) ) |
||
| sqeqd.6 | |- ( ( ph /\ ( Re ` A ) = 0 /\ ( Re ` B ) = 0 ) -> A = B ) |
||
| Assertion | sqeqd | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqeqd.1 | |- ( ph -> A e. CC ) |
|
| 2 | sqeqd.2 | |- ( ph -> B e. CC ) |
|
| 3 | sqeqd.3 | |- ( ph -> ( A ^ 2 ) = ( B ^ 2 ) ) |
|
| 4 | sqeqd.4 | |- ( ph -> 0 <_ ( Re ` A ) ) |
|
| 5 | sqeqd.5 | |- ( ph -> 0 <_ ( Re ` B ) ) |
|
| 6 | sqeqd.6 | |- ( ( ph /\ ( Re ` A ) = 0 /\ ( Re ` B ) = 0 ) -> A = B ) |
|
| 7 | sqeqor | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) ) |
|
| 8 | 1 2 7 | syl2anc | |- ( ph -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) ) |
| 9 | 3 8 | mpbid | |- ( ph -> ( A = B \/ A = -u B ) ) |
| 10 | 9 | ord | |- ( ph -> ( -. A = B -> A = -u B ) ) |
| 11 | simpl | |- ( ( ph /\ A = -u B ) -> ph ) |
|
| 12 | fveq2 | |- ( A = -u B -> ( Re ` A ) = ( Re ` -u B ) ) |
|
| 13 | reneg | |- ( B e. CC -> ( Re ` -u B ) = -u ( Re ` B ) ) |
|
| 14 | 2 13 | syl | |- ( ph -> ( Re ` -u B ) = -u ( Re ` B ) ) |
| 15 | 12 14 | sylan9eqr | |- ( ( ph /\ A = -u B ) -> ( Re ` A ) = -u ( Re ` B ) ) |
| 16 | 4 | adantr | |- ( ( ph /\ A = -u B ) -> 0 <_ ( Re ` A ) ) |
| 17 | 16 15 | breqtrd | |- ( ( ph /\ A = -u B ) -> 0 <_ -u ( Re ` B ) ) |
| 18 | 2 | adantr | |- ( ( ph /\ A = -u B ) -> B e. CC ) |
| 19 | recl | |- ( B e. CC -> ( Re ` B ) e. RR ) |
|
| 20 | 18 19 | syl | |- ( ( ph /\ A = -u B ) -> ( Re ` B ) e. RR ) |
| 21 | 20 | le0neg1d | |- ( ( ph /\ A = -u B ) -> ( ( Re ` B ) <_ 0 <-> 0 <_ -u ( Re ` B ) ) ) |
| 22 | 17 21 | mpbird | |- ( ( ph /\ A = -u B ) -> ( Re ` B ) <_ 0 ) |
| 23 | 5 | adantr | |- ( ( ph /\ A = -u B ) -> 0 <_ ( Re ` B ) ) |
| 24 | 0re | |- 0 e. RR |
|
| 25 | letri3 | |- ( ( ( Re ` B ) e. RR /\ 0 e. RR ) -> ( ( Re ` B ) = 0 <-> ( ( Re ` B ) <_ 0 /\ 0 <_ ( Re ` B ) ) ) ) |
|
| 26 | 20 24 25 | sylancl | |- ( ( ph /\ A = -u B ) -> ( ( Re ` B ) = 0 <-> ( ( Re ` B ) <_ 0 /\ 0 <_ ( Re ` B ) ) ) ) |
| 27 | 22 23 26 | mpbir2and | |- ( ( ph /\ A = -u B ) -> ( Re ` B ) = 0 ) |
| 28 | 27 | negeqd | |- ( ( ph /\ A = -u B ) -> -u ( Re ` B ) = -u 0 ) |
| 29 | neg0 | |- -u 0 = 0 |
|
| 30 | 28 29 | eqtrdi | |- ( ( ph /\ A = -u B ) -> -u ( Re ` B ) = 0 ) |
| 31 | 15 30 | eqtrd | |- ( ( ph /\ A = -u B ) -> ( Re ` A ) = 0 ) |
| 32 | 11 31 27 6 | syl3anc | |- ( ( ph /\ A = -u B ) -> A = B ) |
| 33 | 32 | ex | |- ( ph -> ( A = -u B -> A = B ) ) |
| 34 | 10 33 | syld | |- ( ph -> ( -. A = B -> A = B ) ) |
| 35 | 34 | pm2.18d | |- ( ph -> A = B ) |