This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustuni | |- ( U e. ( UnifOn ` X ) -> U. U = ( X X. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustbasel | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) e. U ) |
|
| 2 | ustssxp | |- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> u C_ ( X X. X ) ) |
|
| 3 | 2 | ralrimiva | |- ( U e. ( UnifOn ` X ) -> A. u e. U u C_ ( X X. X ) ) |
| 4 | pwssb | |- ( U C_ ~P ( X X. X ) <-> A. u e. U u C_ ( X X. X ) ) |
|
| 5 | 3 4 | sylibr | |- ( U e. ( UnifOn ` X ) -> U C_ ~P ( X X. X ) ) |
| 6 | elpwuni | |- ( ( X X. X ) e. U -> ( U C_ ~P ( X X. X ) <-> U. U = ( X X. X ) ) ) |
|
| 7 | 6 | biimpa | |- ( ( ( X X. X ) e. U /\ U C_ ~P ( X X. X ) ) -> U. U = ( X X. X ) ) |
| 8 | 1 5 7 | syl2anc | |- ( U e. ( UnifOn ` X ) -> U. U = ( X X. X ) ) |