This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnfldstr as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Thierry Arnoux, 17-Dec-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldstrOLD | |- CCfld Struct <. 1 , ; 1 3 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnfldOLD | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 2 | eqid | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
|
| 3 | 2 | srngstr | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) Struct <. 1 , 4 >. |
| 4 | 9nn | |- 9 e. NN |
|
| 5 | tsetndx | |- ( TopSet ` ndx ) = 9 |
|
| 6 | 9lt10 | |- 9 < ; 1 0 |
|
| 7 | 10nn | |- ; 1 0 e. NN |
|
| 8 | plendx | |- ( le ` ndx ) = ; 1 0 |
|
| 9 | 1nn0 | |- 1 e. NN0 |
|
| 10 | 0nn0 | |- 0 e. NN0 |
|
| 11 | 2nn | |- 2 e. NN |
|
| 12 | 2pos | |- 0 < 2 |
|
| 13 | 9 10 11 12 | declt | |- ; 1 0 < ; 1 2 |
| 14 | 9 11 | decnncl | |- ; 1 2 e. NN |
| 15 | dsndx | |- ( dist ` ndx ) = ; 1 2 |
|
| 16 | 4 5 6 7 8 13 14 15 | strle3 | |- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } Struct <. 9 , ; 1 2 >. |
| 17 | 3nn | |- 3 e. NN |
|
| 18 | 9 17 | decnncl | |- ; 1 3 e. NN |
| 19 | unifndx | |- ( UnifSet ` ndx ) = ; 1 3 |
|
| 20 | 18 19 | strle1 | |- { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } Struct <. ; 1 3 , ; 1 3 >. |
| 21 | 2nn0 | |- 2 e. NN0 |
|
| 22 | 2lt3 | |- 2 < 3 |
|
| 23 | 9 21 17 22 | declt | |- ; 1 2 < ; 1 3 |
| 24 | 16 20 23 | strleun | |- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) Struct <. 9 , ; 1 3 >. |
| 25 | 4lt9 | |- 4 < 9 |
|
| 26 | 3 24 25 | strleun | |- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) Struct <. 1 , ; 1 3 >. |
| 27 | 1 26 | eqbrtri | |- CCfld Struct <. 1 , ; 1 3 >. |