This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | srngstr.r | |- R = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) |
|
| Assertion | srngstr | |- R Struct <. 1 , 4 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngstr.r | |- R = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) |
|
| 2 | eqid | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } |
|
| 3 | 2 | rngstr | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } Struct <. 1 , 3 >. |
| 4 | 4nn | |- 4 e. NN |
|
| 5 | starvndx | |- ( *r ` ndx ) = 4 |
|
| 6 | 4 5 | strle1 | |- { <. ( *r ` ndx ) , .* >. } Struct <. 4 , 4 >. |
| 7 | 3lt4 | |- 3 < 4 |
|
| 8 | 3 6 7 | strleun | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .x. >. } u. { <. ( *r ` ndx ) , .* >. } ) Struct <. 1 , 4 >. |
| 9 | 1 8 | eqbrtri | |- R Struct <. 1 , 4 >. |