This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex left module of complex numbers is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (Revised by AV, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnrlmod.c | |- C = ( ringLMod ` CCfld ) |
|
| Assertion | cncvs | |- C e. CVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrlmod.c | |- C = ( ringLMod ` CCfld ) |
|
| 2 | 1 | cnrlmod | |- C e. LMod |
| 3 | cnfldex | |- CCfld e. _V |
|
| 4 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 5 | 4 | ressid | |- ( CCfld e. _V -> ( CCfld |`s CC ) = CCfld ) |
| 6 | 3 5 | ax-mp | |- ( CCfld |`s CC ) = CCfld |
| 7 | 6 | eqcomi | |- CCfld = ( CCfld |`s CC ) |
| 8 | id | |- ( x e. CC -> x e. CC ) |
|
| 9 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 10 | negcl | |- ( x e. CC -> -u x e. CC ) |
|
| 11 | ax-1cn | |- 1 e. CC |
|
| 12 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 13 | 8 9 10 11 12 | cnsubrglem | |- CC e. ( SubRing ` CCfld ) |
| 14 | rlmsca | |- ( CCfld e. _V -> CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) ) |
|
| 15 | 3 14 | ax-mp | |- CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) |
| 16 | 1 | eqcomi | |- ( ringLMod ` CCfld ) = C |
| 17 | 16 | fveq2i | |- ( Scalar ` ( ringLMod ` CCfld ) ) = ( Scalar ` C ) |
| 18 | 15 17 | eqtri | |- CCfld = ( Scalar ` C ) |
| 19 | 18 | isclmi | |- ( ( C e. LMod /\ CCfld = ( CCfld |`s CC ) /\ CC e. ( SubRing ` CCfld ) ) -> C e. CMod ) |
| 20 | 2 7 13 19 | mp3an | |- C e. CMod |
| 21 | 1 | cnrlvec | |- C e. LVec |
| 22 | 20 21 | elini | |- C e. ( CMod i^i LVec ) |
| 23 | df-cvs | |- CVec = ( CMod i^i LVec ) |
|
| 24 | 22 23 | eleqtrri | |- C e. CVec |